М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
adelinathebest
adelinathebest
24.04.2022 10:59 •  Химия

Ребят, нужно решить до вечера всю эту контрошу, желательно писать на листе,чтобы все было понятно химию вообще не понимаю


Ребят, нужно решить до вечера всю эту контрошу, желательно писать на листе,чтобы все было понятно хи

👇
Открыть все ответы
Ответ:
Плювиофил
Плювиофил
24.04.2022
1. Кремний. SiO2; H2SiO3
2. Азот. N2O5; HNO3
3. Фосфор. P2O5; H3PO4
4. Галлий
5. Кремний
6. Электронная формула марганца - 3d⁵4s². У марганца также есть вакантная 4p орбиталь, которая может быть использована для размещения возбужденного s-электрона. Т.е. в возбужденном состоянии марганец имеет 7 неспаренных электронов.
Электронная формула хлора - 3s²3p⁵. У хлора есть вакантная d-орбиталь, на которой могут размещаться возбужденные электроны. Т.о. в возбужденном состоянии атом хлора, как и атом марганца, имеет 7 неспаренных электронов. Это сходство и обуславливает их нахождение в одной группе
7. Электронная формула кислорода - 2s²2p⁴. В наличии 2 неспаренных электрона при отсутствии вакантной орбитали, на которой могли бы размещаться неспаренные электроны в возбужденном состоянии. Таким образом, строение внешнего электронного уровня не позволяет иметь количество неспаренных электронов (и, соответственно, проявлять валентность) равное номеру группы
8. Электронная формула азота - 2s²2p³. Имеется 3 неспаренных электрона, отсутствует вакантная орбиталь. Т.о. азот не может образовать 5 неспаренных электронов и проявить валентность 5. Однако, с точки зрения современных взглядов на валентность, валентные связи образуются не только неспаренные электроны, но и неподеленные электронные пары (в случае азота - пара s-электронов). Т.е. максимальное общее количество валентных связей азота равно 4. (Тут возможен вопрос с подковыркой от преподавателя. Т.к. в п.2 мы рассчитывали оксид азота как пятивалентный, то преподаватель может спросить о том, как согласуются между собой выводы п.2 и п.8. На самом деле, валентность 5 в молекуле высшего оксида азота является формальной (расчетной). Структура высшего оксида:
O2N - O - NO2, т.е. каждый атом азота имеет только 3 валентные связи)
9. Электронная формула фтора 2s²2p⁵. Один неспаренный электрон, отсутствует вакантная орбиталь. Дальнейшее объяснение полностью аналогично п.7
10. Все элементы, проявляющие ярко выраженные металлические свойства, имеют строение внешнего уровня xs¹ или xs² (в том числе это справедливо и для d- и f-элементов). По мере заполнения внешней p-орбитали начинают  усиливаться неметаллические свойства. Если элементы с одним или двумя p-элетронами относятся к т.н. переходным элементам проявлять как неметаллические, так и металлические свойства, то по мере дальнейшего заполнения р-орбитали элементы становятся более и более ярко выраженными неметаллами.
11. Есть сомнения в правильности формулировки вопроса - четный ряд большого период содержит 2 металла и 6 неметаллов. Если речь об этих двух металлах в начале ряда, то это вытекает напрямую из п.10. У этих элементов продолжается начатое в нечетном ряду заполнение d-орбитали предыдущего электронного уровня, а внешний уровень имеет только s-электроны, т.е. обуславливает металлические свойства.
16. Электронная формула гелия - 1s², что делает его более похожим на элементы главной подгруппы второй группы, чем на инертные газы восьмой группы.
З.Ы. от автора ответа. Тем не менее, отсутствие вакантных орбиталей и неспаренных электронов (завершенность электронного уровня) у гелия обуславливает его полное сродство с инертными газами (каким он, собственно, и является)
4,7(9 оценок)
Ответ:
kiska510
kiska510
24.04.2022

. Кристаллическая решетка α-формы Ca (устойчивой при обычной температуре) гранецентрированная кубическая, а = 5,56Å. Атомный радиус 1,97Å, ионный радиус Ca2+, 1,04Å. Плотность 1,54 г/см3(20 °C). Выше 464 °C устойчива гексагональная β-форма. tпл 851 °C, tкип 1482 °C; температурный коэффициент линейного расширения 22·10-6 (0-300 °C); теплопроводность при 20 °C 125,6 Вт/(м·К) или 0,3 кал/(см·сек·°C); удельная теплоемкость (0-100 °C) 623,9 дж/(кг·К) или 0,149 кал/(г·°C); удельное электросопротивление при 20 °C 4,6·10-8 ом·м или 4,6·10-6ом·см; температурный коэффициент электросопротивления 4,57·10-3 (20 °C). Модуль упругости 26 Гн/м2 (2600 кгс/мм2); предел прочности при растяжении 60 Мн/м2 (6 кгс/мм2); предел упругости 4 Мн/м2 (0,4 кгс/мм2), предел текучести 38 Мн/м2 (3,8 кгс/мм2); относительное удлинение 50%; твердость по Бринеллю 200-300 Мн/м2 (20-30 кгс/мм2). Кальций достаточно высокой чистоты пластичен, хорошо прессуется, прокатывается и поддается обработке резанием.

Химические свойства Кальция. Конфигурация внешней электронной оболочки атома Ca 4s2, в соответствии с чем Ca в соединениях 2-валентен. Химически Ca очень активен. При обычной температуре Ca легко взаимодействует с кислородом и влагой воздуха, поэтому его хранят в герметически закрытых сосудах или под минеральным маслом. При нагревании на воздухе или в кислороде воспламеняется, давая основной оксид CaO. Известны также пероксиды Ca - CaO2 и CaO4. С холодной водой Ca взаимодействует сначала быстро, затем реакция замедляется вследствие образования пленки Ca(OH)2. Ca энергично взаимодействует с горячей водой и кислотами, выделяя H2 (кроме концентрированной HNO3). С фтором реагирует на холоду, а с хлором и бромом - выше 400 °C, давая соответственно CaF2, CaCl2 и CaBr2. Эти галогениды в расплавленном состоянии образуют с Ca так называемых субсоединения - CaF, CaCl, в которых Ca формально одновалентен. При нагревании Ca с серой получается сульфид кальция CaS, последний присоединяет серу, образуя полисульфиды (CaS2, CaS4 и другие). Взаимодействуя с сухим водородом при 300-400 °C, Ca образует гидрид CaH2 - ионное соединение, в котором водород является анионом. При 500 °C Ca и азот дают нитрид Ca3N2; взаимодействие Ca с аммиаком на холоду приводит к комплексному аммиакату Ca [NH3]6. При нагревании без доступа воздуха с графитом, кремнием или фосфором Ca дает соответственно карбид кальция CaC2, силициды Ca2Si, CaSi, CaSi2 и фосфид Ca3P2. Ca образует интерметаллические соединения с Al, Ag, Au, Cu, Li, Mg, Pb, Sn и другие.

Получение Кальция. В промышленности Ca получают двумя нагреванием брикетированной смеси CaO и порошка Al при 1200 °C в вакууме 0,01-0,02 мм рт. ст.; выделяющиеся по реакции: 6CaO + 2 Al = 3CaO·Al2O3 + 3Ca пары Ca конденсируются на холодной поверхности; 2) электролизом расплава CaCl2 и KCl с жидким медно-кальциевым катодом приготовляют сплав Cu - Ca (65% Ca), из которого Ca отгоняют при температуре 950-1000 °C в вакууме 0,1-0,001 мм рт. ст.

Применение Кальция. В виде чистого металла Ca применяют как восстановитель U, Th, Cr, V, Zr, Cs, Rb и некоторых редкоземельных металлов из их соединений. Его используют также для раскисления сталей, бронз и других сплавов, для удаления серы из нефтепродуктов, для обезвоживания органических жидкостей, для очистки аргона от примеси азота и в качестве поглотителя газов в электровакуумных приборах. Большое применение в технике получили антифрикционные материалы системы Pb-Na-Ca, а также сплавы Pb-Ca, служащие для изготовления оболочки электрич. кабелей. Сплав Ca-Si-Ca (силикокальций) применяется как раскислитель и дегазатор в производстве качественных сталей.

4,5(23 оценок)
Это интересно:
Новые ответы от MOGZ: Химия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ