Горение является основным процессом на пожаре. Пожар начинается с возникновения горения и заканчивается его прекращением. Что лежит
в основе процесса горения, какими характерными особенностями оно обладает?
По-видимому, самым общим определением процесса горения может
быть следующее. Горение – это сложный физико-химический процесс, в
основе которого лежит быстрая химическая реакция, протекающая с выделением большого количества тепла и света.
Какие же химические реакции лежат в основе процесса горения?
Самыми рас реакциями горения являются реакции взаимодействия веществ с кислородом. Например, при горении водорода происходит реакция
Н2 + 0,5 О2 → Н2О
при горении метана –
СН4 + 2 О2 → СО2 + 2 Н2О
при горении ацетона –
С3Н6О + 4 О2 → 3 СО2 + 3 Н2О
Эти реакции относят к классу реакций окисления. Окислителем в
этих реакциях является кислород, а окисляемое в реакции горения вещество называют горючим. Горючими веществами в приведенных примерах
являются водород, метан, ацетон.
Реакции горения протекают при высоких температурах (Т > 1000 К),
поэтому они происходят быстро и до конца (т. е. до полного окисления
горючего вещества). При горении в основном образуются продукты полного окисления: для углерода – это СО2, для водорода – Н2О, для серы –
SО2 и т. д.
При невысоких температурах (Т ≈ 500–700 К) между горючим веществом и кислородом может происходить медленная реакция – окисление.
Например, метан окисляется до метилового спирта (СН3ОН), который в
дальнейшем может окисляться до альдегида (СН2О), а альдегид до муравьиной кислоты (НСООН). Все эти реакции экзотермические (происходят с
выделением тепла). Однако скорость выделения тепла в такой реагирующей
7
смеси недостаточна для поддержания температуры реакции (500–700 К).
Поэтому для того, чтобы в такой системе происходило окисление, реагирующую смесь необходимо подогревать, т. е. сообщать ей дополнительное
количество тепла. Если этого не сделать, то температура реагирующей
смеси вследствие теплопотерь понизится до температуры окружающей
среды (∼300 К) и реакция окисления прекратится. Если же эту систему
(смесь метана с кислородом) нагреть до очень высокой температуры
(>1000 К), то в ней возникнет качественно другая реакция окисления – реакция горения, которая протекает с большой скоростью, окисление идет
сразу до конца (образуются продукты полного окисления), поэтому выделяется максимальное количество тепла, и скорость тепловыделения обеспечивает поддержание в системе высокой температуры. В этом случае реакционную смесь больше подогревать не нужно, собственного тепла достаточно для нагревания этой системы до температуры, при которой происходит химическая реакция горения.
Таким образом, реакция горения, однажды возникнув, в дальнейшем сама себя поддерживать. Именно это является отличительной особенностью реакций горения. Пламя, являющееся зоной химических реакций
горения, будет существовать до тех пор, пока обеспечивается поступление в
эту зону свежих порций горючего и окислителя. С этим связана и пламени самопроизвольно рас по горючей смеси.
Горение веществ может происходить не только при их взаимодействии с кислородом, но и при взаимодействии с другими окислителями,
такими, как хлор, фтор, окислы азота.
Например, водород и многие углеводороды хорошо горят в атмосфере хлора. При горении водорода происходит реакция образования хлористого водорода:
Н2 + Cl2 → 2 HСl
Горение в хлоре сопровождается меньшим тепловыделением и происходит с меньшей скоростью, чем в кислороде.
Реже, но встречается и такое горение, при котором имеет место превращение только одного вещества. Примером тому может служить взрывное разложение ацетилена:
СН ≡ СН → 2 С (сажа) + Н2
К такому же типу реакций можно отнести горение пороха и некоторых твердых ракетных топлив.
Специалистам, работающим в области пожарной безопасности, приходится в основном иметь дело с горением в атмосфере воздуха, где окис
I) Можно предположить, что белая соль А - это сульфат меди (II) безводный. При растворении в воде ионы меди гидратируются с образованием голубой окраски.
1) CuSO₄ (белый)+ 5 H₂O = CuSO₄ * 5 H₂O (голубой)
Из этого раствора можно получить кристаллогидрат CuSO₄ * 5 H₂O синего цвета (медный купорос). А при добавлении к этому раствору щелочи осаждается вещество B - гидроксид меди (II) голубого цвета:
2) CuSO₄ + 2 KOH = Cu(OH)₂ ↓ + K₂SO₄
При прокаливании гидроксида меди (II) образуется вещество С - черный оксид меди (II): 3) Cu(OH)₂ = CuO + H₂O
Оксид меди (II) растворяется в азотной кислоте с образованием воды и соли D - нитрата меди (II), при этом газы не выделяются:
4) CuO + 2 HNO₃ = Cu(NO₃)₂ + H₂O
При прибавлении к солям меди (II) растворимых йодидов образуется не йодид меди (II) CuI₂, как того можно было бы ожидать, а белый осадок Е - йодид меди (I) CuI. То есть помимо реакции ионного обмена идет реакция окисления-восстановления:
5) 2 Cu(NO₃)₂ + 4 KI = 2 CuI↓ + I₂ + 4 KNO₃
Предполагается, что реакция идет в две стадии. Сначала происходит обычный ионный обмен:
а) Cu(NO₃)₂ + 2 KI = CuI₂ + 2 KNO₃
Затем происходит внутримолекулярная реакция окисления - восстановления. Окислитель - Cu²⁺ восстанавливается до Cu⁺, восстановитель - I⁻ окисляется до элементарного йода I⁰ (I₂):
Выделяющийся йод окрашивает раствор в коричневый цвет, но сам йодид меди (I) - белый.
При смешивании раствора соли А - CuSO₄ и нитрата бария Ba(NO₃)₂ выпадает белый осадок сульфата бария, который не растворяется ни в воде, ни в кислотах, ни в щелочах:
CuSO₄ + Ba(NO₃)₂ = Cu(NO₃)₂ + BaSO₄↓
II) Уравнение образования осадка Е - йодида меди (I):
2 Cu(NO₃)₂ + 4 KI = 2 CuI↓ + I₂ + 4 KNO₃
M(KI) = 166 г/моль M(CuI) = 190 г/моль
По условию задачи, масса KI равна 83 г, и это количество строго соответствует уравнению реакции. Согласно уравнению 4 моль (4*166 г) KI дают 2 моль (2*190 г) CuI Тогда 83 г KI дают х г CuI:
2 Cu(NO₃)₂ + 4 KI = 2 CuI↓ + I₂ + 4 KNO₃ 4*166 г 2*190 г 83 г х г
Пропорция: 4*166 2*190 83 х
х = 83*2*190/(4*166) = 47,5 х = 47,5 г Это теоретически возможный выход (100%) Практический выход по условию задачи - 95% Значит, практический выход составит 47,5 г * 95% = 47,5 г * 0,95 = 45,125 г ≈ 45 г.
ответ: масса осадка CuI 45 г.
III) Кристаллогидрат сульфата меди CuSO₄*5 H₂O (обычно в виде водного раствора) используют 1) в строительстве как антисептик и фунгицид (средство от грибков) для предотвращения гниения древесины. 2) как антисептик, фунгицид и удобрение в сельском хозяйстве (особенно в виноградарстве) 3) в лакокрасочной промышленности как синий пигмент для красок 4) при электролитическом рафинировании меди 5) в школьном курсе химии для выращивания монокристаллов
ОБЩИЕ СВЕДЕНИЯ О ГОРЕНИИ И ВЗРЫВЕ
1.1. ХИМИЧЕСКАЯ И ФИЗИЧЕСКАЯ ПРИРОДА ГОРЕНИЯ
Горение является основным процессом на пожаре. Пожар начинается с возникновения горения и заканчивается его прекращением. Что лежит
в основе процесса горения, какими характерными особенностями оно обладает?
По-видимому, самым общим определением процесса горения может
быть следующее. Горение – это сложный физико-химический процесс, в
основе которого лежит быстрая химическая реакция, протекающая с выделением большого количества тепла и света.
Какие же химические реакции лежат в основе процесса горения?
Самыми рас реакциями горения являются реакции взаимодействия веществ с кислородом. Например, при горении водорода происходит реакция
Н2 + 0,5 О2 → Н2О
при горении метана –
СН4 + 2 О2 → СО2 + 2 Н2О
при горении ацетона –
С3Н6О + 4 О2 → 3 СО2 + 3 Н2О
Эти реакции относят к классу реакций окисления. Окислителем в
этих реакциях является кислород, а окисляемое в реакции горения вещество называют горючим. Горючими веществами в приведенных примерах
являются водород, метан, ацетон.
Реакции горения протекают при высоких температурах (Т > 1000 К),
поэтому они происходят быстро и до конца (т. е. до полного окисления
горючего вещества). При горении в основном образуются продукты полного окисления: для углерода – это СО2, для водорода – Н2О, для серы –
SО2 и т. д.
При невысоких температурах (Т ≈ 500–700 К) между горючим веществом и кислородом может происходить медленная реакция – окисление.
Например, метан окисляется до метилового спирта (СН3ОН), который в
дальнейшем может окисляться до альдегида (СН2О), а альдегид до муравьиной кислоты (НСООН). Все эти реакции экзотермические (происходят с
выделением тепла). Однако скорость выделения тепла в такой реагирующей
7
смеси недостаточна для поддержания температуры реакции (500–700 К).
Поэтому для того, чтобы в такой системе происходило окисление, реагирующую смесь необходимо подогревать, т. е. сообщать ей дополнительное
количество тепла. Если этого не сделать, то температура реагирующей
смеси вследствие теплопотерь понизится до температуры окружающей
среды (∼300 К) и реакция окисления прекратится. Если же эту систему
(смесь метана с кислородом) нагреть до очень высокой температуры
(>1000 К), то в ней возникнет качественно другая реакция окисления – реакция горения, которая протекает с большой скоростью, окисление идет
сразу до конца (образуются продукты полного окисления), поэтому выделяется максимальное количество тепла, и скорость тепловыделения обеспечивает поддержание в системе высокой температуры. В этом случае реакционную смесь больше подогревать не нужно, собственного тепла достаточно для нагревания этой системы до температуры, при которой происходит химическая реакция горения.
Таким образом, реакция горения, однажды возникнув, в дальнейшем сама себя поддерживать. Именно это является отличительной особенностью реакций горения. Пламя, являющееся зоной химических реакций
горения, будет существовать до тех пор, пока обеспечивается поступление в
эту зону свежих порций горючего и окислителя. С этим связана и пламени самопроизвольно рас по горючей смеси.
Горение веществ может происходить не только при их взаимодействии с кислородом, но и при взаимодействии с другими окислителями,
такими, как хлор, фтор, окислы азота.
Например, водород и многие углеводороды хорошо горят в атмосфере хлора. При горении водорода происходит реакция образования хлористого водорода:
Н2 + Cl2 → 2 HСl
Горение в хлоре сопровождается меньшим тепловыделением и происходит с меньшей скоростью, чем в кислороде.
Реже, но встречается и такое горение, при котором имеет место превращение только одного вещества. Примером тому может служить взрывное разложение ацетилена:
СН ≡ СН → 2 С (сажа) + Н2
К такому же типу реакций можно отнести горение пороха и некоторых твердых ракетных топлив.
Специалистам, работающим в области пожарной безопасности, приходится в основном иметь дело с горением в атмосфере воздуха, где окис
Объяснение: