Дисперстные системы дисперсные системы - системы, представляющие собой механическую смесь частиц дисперсной фазы со средой-носителем. такие системы являются широко распространенным объектом в природе и повседневной деятельности человека. образование облаков и выпадение осадков, формирование аэрозольной компоненты земной атмосферы, эволюция допланетного роя и частиц межзвездной пыли, миграция дефектов в твердых телах, двухфазные течения в и промышленных установках, перенос в атмосфере различного рода промышленных и радиоактивных загрязнений - все это далеко не полный круг явлений, в которых решающую роль играют процессы, происходящие с дисперсными системами. обычно дисперсные системы подразделяют, исходя из агрегатного состояния частиц дисперсной фазы и среды-носителя. ряд дисперсных систем получил отдельные названия: •аэрозоли (взвесь твердых или жидких частиц в газовой среде, обычно в воздухе) ; •эмульсии (жидкие частицы, обычно стабилизированные защитными оболочками, в жидкой среде) •коллоиды (взвесь твердых частиц в жидкой среде) ; •астрозоли (твердые или жидкие частицы в вакууме) кроме того, существуют дисперсные системы без устоявшихся названий: ансамбли газовых пузырьков в твердом теле или жидкости, ансамбли жидких капель в твердом теле и т. д. дисперсные системы многими необычными свойствами, которые требуют отдельного изучения и сказываются на практике. так, отдельно взятая молекула вещества в газовом состоянии имеет одни свойства, в сплошном состоянии – другие свойства, а в состоянии аэрозоли (дисперсная фаза) уже совсем другие свойства, которые являются плавным переходом от газообразной к твёрдой фазе. можно назвать своеобразную газодинамику, обусловленную различным движением среды-носителя и частиц дисперсной фазы; необычные оптические свойства, вызванные сравнимостью размеров частиц с длинами волн света и влиянием формы частиц; повышенную способность к взаимодействиям, вызванную чрезвычайно развитой поверхностью частиц.
Дано: V(газа)=4,48 л n(газа) = 0,1 моль Найти: ω(S)-? ω(Fe)-? При прокаливании серы с железом образуется сульфид железа, при растворении в соляной кислоте сульфида железа выделяется сероводород, а если в избытке было железо, то и водород. При сгорании водорода образуется вода, а при сгорании сероводорода образуется сернистый газ. Задачу начнем решать с последнего, найдем массу сероводорода по уравнению реакции: х г 0,1 моль 2H2S+3O2 = 2H2O+2SO2 68 г 2 моль х=68*0,1/2=3,4 г Находим массу сульфида железа: х г 3,4 г FeS+2HCl = FeCl2+H2S 120 г 34 г х=120*3,4/34=12 г Находим объем сероводорода: V(H2S)=m(H2S)/M(H2S)*Vm = 3,4 г/34 г/моль*22,4 л/моль = 2,24 л Находим объем водорода: V(H2) = V(газа)-V(H2S) = 4.48 л-2,24 л = 2,24 л Находим массу железа, которая была взята в излишке: х г 2,24 л Fe + 2HCl = FeCl2 + H2 56 г 22,4 л х=56*2,24/22,4= 5,6 г Находим массы железа и серы в сульфиде железа массой 12 г m(Fe) = m(FeS)/M(FeS)*M(Fe) m(Fe) = 12 г/120 г/моль*56 г/моль = 5,6 г m(S) = m(FeS)/M(FeS)*M(S) m(S) = 12 г/120 г/моль*32=3,2 г Общая масса железа составит: m'(Fe) = 5.6 г+5,6 г = 11,2 г Находим массу исходной смеси: m(смеси) = m'(Fe)+m(S) = 3.2 г + 11,2 г = 14,4 г Находим массовые доли серы и железа в исходной смеси: ω(S) = m(S)/m(смеси) = 3,2 г/14,4 г = 0,2222 или 22,22% ω(Fe) = m(Fe)/m(смеси) = 11,2 г/14,4 г = 0,7778 или 77,78% ответ: В исходной смеси массовые доли серы и железа соответственно составляли 22,22% и 77,78%