1)Простые вещества — вещества, состоящие исключительно из атомов одногохимического элемента (из гомоядерных молекул)[1][2], в отличие от сложных веществ.
2)Калий находится под порядковым номер 19, атомная масса равна 39.0938, находится в 1 группе в 4 периоде, имеет 4 энергетических уровня, щелочной металл, при взаимодействия с водой образует щелочь.
3)
1) S+Fe = FeS
2) FeS+2 HCl=FeCl2+H2S
3) 2H2S+3O2=2SO2+2H2O
4) SO2+2 NaOH=Na2SO3+H2O
или
4) SO2+ Na2O=Na2SO3
5) Na2SO3+H2SO4=Na2SO4+H2SO3
или
5) 2 Na2SO3+O2=2Na2SO4
6) Na2SO4+Ba(NO3)2=BaSO4 (осадок) +NaNO3
или
6) Na2SO4+BaCl2=BaSO4 (осадок) +2NaCl
4)Ag+HNO3= AgNO3+NO+H2O
І2+Cl2+H2O--->HIO3+HCl
Окислителем будет хлор Cl2
Восстановитель - йод I2
Коэффициент перед восстановителем: 1 (ответ Б)
определяем степени окисления тех атомов, которые её меняют в ходе реакции:
В соединении I2 - степень окисления йода 0. А после реакции степень окисления йода в соединении HIO3 стала +5, то есть йод отдал (потерял свои электроны (частицы с отрицательным зарядом). Процесс отдачи электронов - окисление. а сам йод - восстановитель.
В соедининии Cl2 степень окисления хлора 0, а после реакции в соединении HCl степень окисления хлора -1. То есть хлор забрал (притянул к себе) электроны. Это процесс восстановления. А сам хлор - окислитель.
Теперь разберемся, сколько именно электронов.
Если йод меняет степень окисления с 0 до +5, то происходит отдача 5 электронов, а т.к. атомов йода 2, то 2*5=10 электронов.
Если хлор меняет степень окисления с 0 до -1, происходит присоединение одного электрона, но т.к. атомов хлора 2, то 2*1=2 электрона.
Чтобы уравнять количества вещ-в уравнении, надо проставить коэффициенты (крест накрест), т.е перед йодом поставим 2, а перед хлохом 10. Но их можно сократить на 2, поэтому перед йодом I2 будет 1, а перед хлором Cl2 будет 5.
Потом уравниваем количества других вещ-в (водорода, потом кислорода). в итоге будет так:
0 0 +5 -1
J2+5Cl2+6H2O=2HJO3+10HCl
коэфф-ты 0 +5
1| 2 I J2 -10е (электронов)=2I - процесс окисления, J восстановитель
0 -1
5I 10 I Cl2 +2e (Электрона)=2Cl - процесс восстановления, Cl окисл-ль
5)Не смог я всего лишь 8 класс сорри
1. Элемент №15 -фосфор, его атомная масса Ar=31, его заряд ядра Z=+15, в ядре 15 p⁺(протонов) и 16 n⁰(нейтронов). Вокруг ядра находятся 15 e⁻(электронов), которые размещаются на трех энергетических уровнях, так как фосфор находится в третьем периоде.
Напишем модели строения атома фосфора:
а). Модель атома фосфора при дуг:
₊₁₅P)₂)₈)₅
б). Модель атома фосфора , через электронную формулу (электронная конфигурация):
₊₁₅P 1s²2s²2p⁶3s²3p³
в). Электронно-графическая модель атома фосфора :
↑ ↑ ↑
3уровень ⇵
⇅ ⇅ ⇅
2уровень ⇅
1уровень ⇅
₊₁₅P
2. Молекула простого вещества фосфора четырехтомная P₄. Фосфор неметалл, в химических реакциях может быть восстановителем, может быть окислителем.
3. Молекулы атомов в 4 группе, главной подгруппе: азота двухатмная N₂, фосфора четырехтомные P₄, мышьяка As, сурьмы Sb и висьмута Bi одноатомные. С увеличением заряда ядра от азота к висьмуту неметалические свойства уменьшаются, а металлические усиливаются.
4. Молекулы атомов простых веществ в периоде: натрий,магний, алюминий, кремний - одноатомные; фосфора четырехтомные P₄, серы многоатомные (S)n,хлора двухатомные CI₂. От натрия к хлору меняются свойства веществ: натрий, магний - металлы, алюминий -амфотерный металл, кремний полуметалл, фосфор, сера, хлор - неметаллы. Также слева направо в периоде меняются окислительно-восстановительные свойства. Натрий, магний, алюминий - восстановители. Кремний, фосфор, сера, хлор - могут быть как восстановителями, так окислителями.
5. Высший оксид фосфора – P₂O₅, кислотный оксид:
6. Гидроксид –H₃PO₄ , слабая фосфорная кислота,
7. Летучее соединение с водородом РH₃ - гидрид фосфора, бесцветный газ, с неприятным запахом гнилой рыбы
3.
4P + 5O₂=2P₂O₅
P₂O₅ + 3H₂O = 2H₃PO₄
H₃PO₄ + 3NaOH= Na₃PO₄ + 3H₂O
2Na₃PO₄ + 3Li₂CO₃ = 2Li₃PO₄↓ + 3Na₂CO₃
Na₂CO₃ + CaCI₂= CaCO₃↓ + 2NaCI
CaCO₃ + t = CO₂ + CaO
4. CаS, H₂S, SO₃, H₂O, Fe₂O₃, NaOН, СаО, H₂SO₄ , Ca(OН)₂
Углекислый газ (оксид углеродаIV) будет взаимодействовать с:
Шестивалентный хром «Cr(VI)» является важным сырьем, которое широко применяется в различных отраслях промышленности, в том числе в металлургии, электроплитах и кожевенном загаре. Две формы Cr с различными состояниями окисления, Cr (VI) и Cr (III), как правило, существуют в естественной среде. Cr(VI) также считается приоритетным загрязнителем, и его восстановление привлекло все большее внимание вобласти окружающей среды (Jiang et al., 2015). Токсичность Cr(III) намного ниже, чем у Cr (VI), и она может быть легко осаждается как Cr (OH)3, в то время как Cr(VI) растворим в широком диапазоне рН. Сокращение представляет собой эффективную стратегию восстановления Cr (VI)(Parker et al., 2011; Хаггинс и др., 2016).
Потенциал сульфидных минералов, таких как пирит или уменьшенная сера при рекультивации загрязняющих веществ, чувствительных к редоксу, вызвал большой интерес в последние годы(He and Traina, 2005). Тем не менее, поверхность пирита, как правило, пассивируется из-за образования соединений Fe-Cr, в результате чего использование пирита блокируется и тем самым препятствует дальнейшему сокращению Cr (VI)(He and Traina, 2005; Гонг и др., 2017). Укрепление меры, которые были применены в пирита или железосодержащих материалов на основе Cr (VI) сокращение в основном сосредоточены на тепловой модификации, механической дробления, и органической кислоты / хелатирующего агента того и т.д. (Дойл и др., 2004). Физическая обработка увеличивает специфическую площадь поверхности и степень пиритной реакции, что повышает эффективность снижения Cr (VI). Органическая кислота и хелатирующие агенты выступают в качестве буферов в реакции поддержанию подходящего диапазона рН(Kantar et al., 2015; Кантар и Бульбюль, 2016; Mandal et al., 2017). Поверхность пирита является свойством, измененным после этих процедур, и пассивация также освобождается в некоторой степени. Тем не менее, Cr (VI) сокращение по-прежнему остается на неудовлетворительном уровне, так как только поверхность пирита участвует в реакции сокращения. Быстрый и упорядоченный растворение минералов определяет, можно ли использовать сокращение Cr (VI) на основе пирита в промышленных масштабах. Согласно нашим предыдущим исследованиям, активность acidithiobacillus ferrooxidans значительно усилила окисление серы и растворение пирита, а также соответствующее сокращение Cr (VI)(Gan et al., 2018; Wang et al., 2019).
Следует отметить, что влияние рН на сокращение на основе пирита Cr (VI) остается неясным, особенно в сложной системе, где присутствует A. ferrooxidans. Химическое равновесие и окислительные свойства Cr, Fe и S в растворе в основном определяются протонами(Kim et al., 2002; Бэй и Ханна, 2015). Протонация/депротонация, растворение пирита и cr (VI) асорпция в реакции снижения Cr (VI) находятся под влиянием рН. Свойства поверхности пирита изменятся с изменением рН. Кроме того, на биологическую деятельность, включая метаболизм Fe/S, распространение бактерий и физиологическую активность, также влияет рН. Более высокая эффективность снижения Cr(VI) может быть получена в оптимальном диапазоне рН в практическом применении. Целью данного исследования является анализ синергетического эффекта между ацидофилиновых бактерий и пирита в Cr (VI) сокращение, чтобы пролить свет на влияние рН и дозировки на пирит-бактерии-Cr (VI) взаимодействия, а также внести свой вклад в увеличение пирита растворения и Cr (VI) снижение эффективности. Это исследование имеет экологическое и практическое значение для решения проблем загрязнения, чувствительных к редоксу, в горнодобывающей и плавильной промышленности.
Перейти к:
Материалы и методы
Условия микроорганизмов, среды и культуры
Ацидофильная бактерия A. ferrooxidans 23 270, использованная в данном исследовании, хранилась в Ключевой лаборатории биометаллургии Министерства образования Китая. Он был выуфся в 9 K среды с добавлением 10 г / л S0 в качестве источника энергии при 30 градусах Цельсия и при 180 об/мин. Возвышенная сера с чистотой выше 99,5% была приобретена у TianJing Hengxing Chemical Reagent Co. Ltd. Состав среды 9 K был следующим образом: (NH4)2Сооо4 3,0 г/л, KC1 0,1 г/л, К2HPO4 0,5 г/л, МгСО4 0,5 г/л и ca(NO3)2 0,01 г/л. Среда была скорректирована до рН 2.0 с разбавленной серной кислотой и autoclaved в течение 20 мин при 121 градусов по Цельсию. Все реагенты были аналитического класса. Бактерии были собраны в конце экспоненциальной фазы (около 4 дней). Культуры были впервые отфильтрованы фильтровальной бумагой на 0,45 мкм для удаления осадка. Фильтрат был затем центрифугирован на 12000 об / мин в течение 20 минут, чтобы собрать клетки. Клетки промывались дважды и перерасходулись в дистиллированной воде.