Упрощённая зонная структура полупроводника и диэлектрика при нулевой абсолютной температуре с изображением нескольких дополнительных зон помимо валентной зоны и зоны проводимости. Уровень Ферми на рисунке обозначен {\displaystyle E_{F}}E_F.
Диаграмма заполнения электронных уровней энергии в различных типах материалов в равновесном состоянии. На рисунке по высоте условно показана энергия, а ширина фигур — плотность состояний для данной энергии в указанном материале.
Полутона соответствует распределению Ферми — Дирака (черный — все состояния заполнены, белый — состояние пустое).
В металлах и полуметаллах уровень Ферми {\displaystyle E_{F}}E_F находится внутри, по меньшей мере, одной разрешённой зоны. В диэлектриках и полупроводниках уровень Ферми находится внутри запрещённой зоны, но в полупроводниках зоны находятся достаточно близко к уровню Ферми для заполнения их электронами или дырками в результате теплового движения частиц.
При уменьшении размеров системы (числа частиц в системе) уровень энергии низа зоны проводимости, как правило, увеличивается относительно уровня Ферми.
Аналогом энергии нижней границы зоны проводимости в молекулярных системах (кластерах) является энергия нижней свободной молекулярной орбитали
1) М (Cu(NO3)2) = 184 г/моль; М (K2O) = 94 г/моль. 2) Массы элементов в соединении относятся как массовые доли делённые на атомную массу: Na : S : O = 29,1/23 : 40,5/32 : 30,4/16 = 1,27 : 1,27 : 1,9... Для округления до целых чисел делим на меньшее из этих чисел, то есть на 1,27: Na : S : O = 1 : 1 : 1,5... Так как 1,5 не целое число, умножаем на два: Na : S : O = 2 : 2 : 3... Соответственно, формула соединения: Na2S2O3 (тиосульфат натрия). 3) 150 л - 100% х л - 94% Из пропорции х = 150*94/100 = 141 л. Соответвественно, в этой смеси V (O2) = 150 - 141 = 9 л. 4) m1 = 120 * 0,1 = 12 г (масса соли в растворе) m2 = 12 + 12 = 24 г (масса всей соли) m3 = 120 + 12 = 132 г (общая масса всего раствора) ω = 24 / 132 * 100% = 18,2% (концентрация соли в растворе)
Объяснение:
Упрощённая зонная структура полупроводника и диэлектрика при нулевой абсолютной температуре с изображением нескольких дополнительных зон помимо валентной зоны и зоны проводимости. Уровень Ферми на рисунке обозначен {\displaystyle E_{F}}E_F.
Диаграмма заполнения электронных уровней энергии в различных типах материалов в равновесном состоянии. На рисунке по высоте условно показана энергия, а ширина фигур — плотность состояний для данной энергии в указанном материале.
Полутона соответствует распределению Ферми — Дирака (черный — все состояния заполнены, белый — состояние пустое).
В металлах и полуметаллах уровень Ферми {\displaystyle E_{F}}E_F находится внутри, по меньшей мере, одной разрешённой зоны. В диэлектриках и полупроводниках уровень Ферми находится внутри запрещённой зоны, но в полупроводниках зоны находятся достаточно близко к уровню Ферми для заполнения их электронами или дырками в результате теплового движения частиц.
При уменьшении размеров системы (числа частиц в системе) уровень энергии низа зоны проводимости, как правило, увеличивается относительно уровня Ферми.
Аналогом энергии нижней границы зоны проводимости в молекулярных системах (кластерах) является энергия нижней свободной молекулярной орбитали