Объяснение:
На примере этой реакции рассмотрим, как составлять электронный баланс.
1. Запишем схему этой реакции:
KMnO4 + HCI = KCI + MnCI2 + CI2 + H2O
2. Расставим степени окисления всех элементов в веществах, участвующих в реакции:
K+Mn+7O-24 + H+CI- = K+CI- + Mn+2CI-2 + CI02 + H+2O-2
Степени окисления поменяли марганец и хлор.
3. Составляем схему, отражающую процесс перехода электронов:
Mn+7+5е- = Mn+2 окислитель, процесс восстановление
2 CI- -2е- = CI02 восстановитель, процесс окисление
4. Уравняем число отданных и принятых электронов. Для этого находим наименьшее общее кратное для чисел 5 и 2. Это 10. В результате деления наименьшего общего кратного на число отданных и принятых электронов, находим коэффициенты перед окислителем и восстановителем.
Mn+7+5е- = Mn+2 2
2 CI- -2е- = CI02 5
5. Переносим коэффициенты в исходную схему и преобразуем уравнение реакции.
2KMnO4 + ? HCI = ?KCI + 2MnCI2 + 5CI2 +? H2O
Однако перед формулой соляной кислоты не поставлен коэффициент, так как не все хлоридные ионы участвовали в окислительно-восстановительном процессе. Метод электронного баланса позволяет уравнивать только ионы, участвующие в окислительно-восстановительном процессе. Поэтому нужно уравнять количество ионов, не участвующих в окислительно-восстановительной реакции. А именно катионов калия, водорода и хлоридных анионов. В результате получается следующее уравнение:
2KMnO4 + 16 HCI = 2KCI + 2MnCI2 + 5CI2 + 8H2O
Пример №2. Взаимодействие меди с концентрированной азотной кислотой. Рис. 2.
В стакан с 10 мл кислоты поместили «медную» монету. Быстро началось выделение бурого газа (особенно эффектно выглядели бурые пузырьки в еще бесцветной жидкости). Все пространство над жидкостью стало бурым, из стакана валили бурые пары. Раствор окрасился в зеленый цвет. Реакция постоянно ускорялась. Примерно через полминуты раствор стал синим, а через две минуты реакция начала замедляться. Монета полностью не растворилась, но сильно потеряла в толщине (ее можно было изогнуть пальцами). Зеленая окраска раствора в начальной стадии реакции обусловлена продуктами восстановления азотной кислоты.
Рис. 2
1. Запишем схему этой реакции:
Cu + HNO3 = Cu (NO3)2 + NO2↑ + H2O
2. Расставим степени окисления всех элементов в веществах, участвующих в реакции:
Cu0 + H+N+5O-23 = Cu+2(N+5O-23)2 + N+4O-22↑ + H+2O-2
Степени окисления поменяли медь и азот.
3. Составляем схему, отражающую процесс перехода электронов:
N+5+е- = N+4 окислитель, процесс восстановление
Cu0 -2е- = Cu+2 восстановитель, процесс окисление
4. Уравняем число отданных и принятых электронов. Для этого находим наименьшее общее кратное для чисел 1 и 2. Это 2. В результате деления наименьшего общего кратного на число отданных и принятых электронов, находим коэффициенты перед окислителем и восстановителем.
N+5+е- = N+4 2
Cu0 -2е- = Cu+2 1
5. Переносим коэффициенты в исходную схему и преобразуем уравнение реакции.
Cu + ?HNO3 = Cu (NO3)2 + 2NO2↑ + 2H2O
Азотная кислота участвует не только в окислительно-восстановительной реакции, поэтому коэффициент сначала не пишется. В результате, окончательно получается следующее уравнение:
Cu + 4HNO3 = Cu (NO3)2 + 2NO2↑+ 2
Массовая доля гидроксида натрия 2,28%
Массовая доля сульфата натрия 4,05%
Объяснение:
Масса сульфата меди 2
200*0,08=16г
Количество его
16/160=0,1 моль
Масса гидроксида натрия
160*0,1=16 г
Количество гидроксида натрия
16/40=0,4 моль
CuSO4+2NaOH=Cu(OH)2↓+Na2SO4
0,1 0,2 0,1 0,1
Масса гидроксида меди 2
0,1*98=9,8 г
Масса полученного раствора (осадок в состав раствора не входит)
200+160-9,8=350,2 г
Масса избытка гидроксида натрия
(0,4-0,2)*40=8 г
Масса сульфата натрия
0,1*142=14,2 г
Массовая доля гидроксида натрия
8/350,2*100=2,28%
Массовая доля сульфата натрия
14,2/350,2*100=4,05%