Цепочка превращений:
Fe -> FeCl2 -> Fe(OH)2 -> FeO -> Fe.
При действии разбавленного раствора хлороводородной кислоты на металлическое железо образуется хлорид железа (II). Реакцию проводят без доступа воздуха.
\[ Fe + 2HCl_{dilute} \rightarrow FeCl_2 + H-2_{gas}.\]
В результате обменной реакции между хлоридом железа (II) и разбавленным раствором гидроксида натрия наблюдается выпадение осадка гидроксида железа (II). Реакцию проводят в атмосфере азота.
\[ FeCl_2 + 2NaOH_{dilute} \rightarrow Fe(OH)_2_{solid} + 2NaCl.\]
Гидроксид железа (II) разлагается при нагревании на оксид железа (II) и воду ($150 – 200^{0}C)):
\[ Fe(OH)_2 \rightarrow FeO + H_2O.\]
Получение железа из оксида железа (II) возможно в результате восстановления последнего водородом (1) или коксом (2):
\[ FeO + H_2 \rightarrow Fe + H_2O (1);\]
\[ FeO + C \rightarrow Fe + CO (2).\]
Оксид железа (II) представляет собой твердое вещество черного цвета, которое при умеренном нагревании разлагаются, но при дальнейшем нагревании продуктов разложения образуется вновь. После прокаливания химически неактивен. Нестехиометрический. В виде порошка пирофорен.
Оксид железа (II) не реагирует с холодной водой. Проявляет амфотерные свойства (основные свойства преобладают); реагирует с кислотами, гидроксидом натрия (при сплавлении). Легко окисляется кислородом.
\[FeO + 2HCl_dilute \rightarrow FeCl_2 + H_2O;\]
\[FeO + 4NaOH \rightarrow Na_4FeO_3_red + 2H_2O (400 - 500^{0}C);\]
\[FeO + H_2S \rightarrow FeS + H_2O (500^{0}C);\]
Оксид железа (II) получают путем термического разложения гидроксида железа (II), а также некоторых двухвалентных солей (оксалатов, карбонатов), либо по реакции нагревания железа при низком парциальном давлении кислорода.
Галогенирование (электрофильное присоединение) — взаимодействие этилена с галогенами, например, с бромом, при котором происходит обесцвечивание бромной воды:
CH2 = CH2 + Br2 = Br-CH2-CH2Br.
Галогенирование этилена возможно также при нагревании (300С), в этом случае разрыва двойной связи не происходит – реакция протекает по механизму радикального замещения:
CH2 = CH2 + Cl2 → CH2 = CH-Cl + HCl.
Гидрогалогенирование — взаимодействие этилена с галогенводородами (HCl, HBr) с образование галогенпроизводных алканов:
CH2 = CH2 + HCl → CH3-CH2-Cl.
Гидратация — взаимодействие этилена с водой в присутствии минеральных кислот (серной, фосфорной) с образованием предельного одноатомного спирта – этанола:
CH2 = CH2 + H2О → CH3-CH2-ОН.
Среди реакций электрофильного присоединения выделяют присоединение хлорноватистой кислоты (1), реакции гидрокси- и алкоксимеркурирования (2, 3) (получение ртутьорганических соединений) и гидроборирование (4):
CH2 = CH2 + HClO → CH2(OH)-CH2-Cl (1);
CH2 = CH2 + (CH3COO)2Hg + H2O → CH2(OH)-CH2-Hg-OCOCH3 + CH3COOH (2);
CH2 = CH2 + (CH3COO)2Hg + R-OH → R-CH2(OCH3)-CH2-Hg-OCOCH3 + CH3COOH (3);
CH2 = CH2 + BH3 → CH3-CH2-BH2 (4).
Реакции нуклеофильного присоединения характерны для производных этилена, содержащих электроноакцепторные заместители. Среди реакций нуклеофильного присоединения особое место занимают реакции присоединения циановодородной кислоты, аммиака, этанола. Например,
2ON-CH = CH2 + HCN →2ON-CH2-CH2-CN.
В ходе реакций окисления этилена возможно образование различных продуктов, причем состав определяется условиями проведения окисления. Так, при окислении этилена в мягких условиях (окислитель – перманганат калия) происходит разрыв π-связи и образование двухатомного спирта — этиленгликоля:
3CH2 = CH2 + 2KMnO4 +4H2O = 3CH2(OH)-CH2(OH) +2MnO2 + 2KOH.
При жестком окислении этилена кипящим раствором перманганата калия в кислой среде происходит полный разрыв связи (σ-связи) с образованием муравьиной кислоты и углекислого газа:
Окисление этилена кислородом при 200С в присутствии CuCl2 и PdCl2 приводит к образованию ацетальдегида:
CH2 = CH2 +1/2O2 = CH3-CH = O.
При восстановлении этилена происходит образование этана, представителя класса алканов. Реакция восстановления (реакция гидрирования) этилена протекает по радикальному механизму. Условием протекания реакции является наличие катализаторов (Ni, Pd, Pt), а также нагревание реакционной смеси:
CH2 = CH2 + H2 = CH3-CH3.
Этилен вступает в реакцию полимеризации. Полимеризация — процесс образования высокомолекулярного соединения – полимера-путем соединения друг с другом с главных валентностей молекул исходного низкомолекулярного вещества – мономера. Полимеризация этилена происходит под действием кислот (катионный механизм) или радикалов (радикальный механизм):
n CH2 = CH2 = -(-CH2-CH2-)n-.
Объяснение:
C2H4 + Cl2 = C2H4Cl2
n(C2H4) : n(Cl2) : n(C2H4Cl2) =1:1:1
А. 1 моль