ответ:
амины проявляют ярко выраженные основные свойства. они являются донорами электронной пары (основания льюиса), и в частности предоставляют пару электронов на свободную орбиталь н+ (сродство к протону – основность по бренстеду).
за счет +i эффекта алкильных групп, алифатические амины являются более сильными основаниями, чем аммиак. при увеличении количества алкильных групп (при переходе от вторичных к третичным аминам) основность насколько снижается за счет стерических затруднений доступности неподеленной пары электронов. для циклических и каркасных аминов такой проблемы не существует и они в сравнении с открыто-цепными аминами, как привило боле сильные основания. анилины меньшими основными свойствами, чем алифатические амины. это связано с частичным сопряжением неподеленной пары электронов азота с ароматическим кольцом, что приводит к уменьшению способности этой пары взаимодействовать с вакантной орбиталью кислоты. донорные заместители в ароматическом ядре повышают основность анилинов, а акцепторные понижают. при наличии нескольких акцепторных групп в ароматическом кольце основные свойства и, например, 2,4-динитроанилин (pka=–4,4) проявляет основные свойства только в среде концентрированной серной кислоты.
алкилирование аминов.
алкилирование аминов, как и получение аминов из аммиака и галоидных алкилов имеет ограниченное применение. в основном она используется для получения несимметричных четвертичных аммонийных солей. последние, действием гидроксида серебра количественно переводятся в соответствующие четвертичные аммонийные основания.
ацилирование аминов.
первичные и вторичные амины, аналогично аммиаку, реагируют со сложными эфирами, и кислот с образованием n-замещенных амидов.
третичные алифатические амины не вступают в реакцию с производными карбоновых кислот.
взаимодействие аминов с и кетонами.
аммиак и первичные амины реагируют с и кетонами с образованием иминов (оснований шиффа).
вторичные амины в аналогичных условиях енамины.
обе эти реакции протекают по механизму присоединения по карбонильной группе. третичные амины не вступают в реакции с и кетонами.
взаимодействие алифатических и ароматических аминов с азотистой кислотой. соли диазония.
в зависимости от количества заместителей, алифатические амины в реакциях с азотистой кислотой могут образовывать крайне нестойкие соли диазония – первичные амины, n-нитрозоамины – вторичные амины или n-нитрозоаммонийные соли – третичные амины. по большей части эти реакции носят аналитический характер, так как позволяют с простой качественной реакции различить первичные, вторичные и третичные амины.
первичные ароматические амины (анилины) легко реагируют с азотистой кислотой с образованием достаточно стабильных в растворах (около 0˚с) солей диазония. как правило, акцепторные заместители в ароматическом ядре способствуют стабилизации солей диазония. так, п-нитрофенилдиазоний устойчив в растворе уже при комнатной температуре.
с реакций замещения из ароматических аминов, через образование солей диазония, получаются все арилгалогениды нитрилы и нитроароматические соединения. насколько особняком стоит реакция замены группы n≡n+ на f. в этой реакции (реакция шиммана) источником фтора в данной реакции является комплексный анион bf4- или pf6-. термическое разложение соли диазония с соответствующим противоионом приводит к замене диазо-группы на фтор. с гипофосфита натрия или этилового спирта многие соли диазония восстанавливаются до ароматических углеводородов (реакция деаминирования).
соли диазония, являясь электрофильными частицами, способны вступать в реакцию электрофильного замещения с некоторыми активными ароматическими субстратами – фенолами и анилинами. эта реакция называется – азосочетание, а ее продукты азо-соедигнения.
1.
1)SO2
S–32 а.о.м.
O–16 а.о.м
Mr(SO2)=Ar(S)+Ar(O)×2=32+(16×2)=64
W(O)=32/64=0.5(×100%=50%)
ответ: Да
2) Пероксид водорода: H2O2
ответ: Да.
3)ответ: Да, потому что кислород занимает 2 место в в воздухе или ~22%.
4)ответ: Да
Пример: P2O5, N2O3, H2O, MgO4, MnO2.
(исключения при I степени окисления кислорода).
2.
1)H2S, 2)O2, 3)C(n)H(m), 4)Fe
ответ: 1),3)
3.
ответ: Только у 2) и 4), потому что у 1) и 3) есть химические уравнения.
4.
1)CaO=56 2)HNO3=63 3)Cu(OH)2=98
N2S=60 H2SO4=98 NH4NO3=80
4)CuSO4=160
Fe2O3=160
ответ: 4)
5. Fe(NO3)2 • Fe(NO3)2
N=2 N=2
N=4
ответ: 2)4
6. ответ:4)
Дальше устал писать, поэтому пишу только ответы.
7.
3)
8.
а)—3
б)—3
в)—4
9.
1),2)
10.
4)
11.
2),3),4)
12.
3),5)
13.
1)
14.
1)
15.
1)
16.
1) C+O2=CO2(или 2C+O2=2CO)
2) 2Se+3O2=2SeO3(или 2Se+O2=2SeO)
3) 4Ag+O2=2Ag2O
4) Zr+O2=ZrO2
5) Al2S3+6O2=Al2O3+3SO3
17.
X2O
X—93,1%
O—6,9%
Ag2O=232
Ag2=216
O=16
W(Ag)=216/232=0.931(×100%=93,1%)
1) H2SO3
2)Na3PO4
Объяснение:
както так