Классифицируйте следующие соединения на оксиды, основания, кислоты, соли: Na 2О, К3PО4, Н2SO4, CaCO3, H3 PO4, CO2, HNО3, Al2O3, Ca (OH) 2, KOH, Al (OH) 3, P2O5, Li2SO4 HCl, Сu (ОН) 2, AlCl3, Оксиды: Основы: Кислоты: Соли: 1. (а) Определите оксиды и основания в соответствии с их классификацией: Н2SO4
Закономерности, происходящие в веществах, процессы их превращения, при которых происходит изменение их состава и структуры, изучает раздел естествознания — химия. Она занимается явлениями природы, сопровождающими химические изменения вещества, изучает причины и законы управления химическими процессами, а также рассматривает составные части вещества и их применение на практике. Отдельные химические процессы (получение металлов из руд, крашение тканей и др.) использовались еще на заре становления человеческой цивилизации. Позже, в III—IV вв., зародилась алхимия, задачей которой было превращение неблагородных металлов в благородные (золото, серебро). Начиная с эпохи Возрождения химические исследования все в большей мере стали использовать для практических целей (металлургия, стеклоделие, керамика, получение красок и т. д.). Химию можно определить как науку, изучающую вещества и процессы их превращения, сопровождающиеся изменением состава и структуры. Химический процесс сопровождается изменением состава веществ, их структуры и обязательно энергетическими изменениями в реагирующей системе. Вследствие взаимосвязанности форм движения материи и их взаимопре- 197
вращаемости в результате химических реакций имеет место превращение химической энергии в теплоту, свет и проч. Химия нужна человечеству для того, чтобы из вещества природы получать по возможности все необходимое — металлы, цемент, бетон, керамику, фарфор, стекло, каучук, пластмассы, искусственные волокна, лекарства и многое другое. Основой химической науки является атомно-молекулярное учение (АМУ), закон сохранения материи, периодический закон и теория строения вещества, учение о химическом процессе (кинетика). Химические процессы подчиняются всеобщим законам природы — закону сохранения массы вещества и закону сохранения энергии. Закон сохранения массы вещества открыли М. В. Ломоносов и А. Л. Лавуазье почти независимо друг от друга. Они далеко продвинули развитие химии тем, что при химических реакциях применили физические методы, в частности взвешивание. Закон сохранения массы в химических процессах можно сформулировать так: сумма масс исходных веществ (соединений) равна сумме масс продуктов химической реакции. Например, при разложении воды масса воды будет равна сумме массы водорода и массы кислорода. Из закона сохранения вещества вытекает, что вещество нельзя ни создать из ничего, ни уничтожить совсем. Количественным выражением закона сохранения массы веществ применительно к производственному химическому процессу является материальный баланс, в котором подтверждается, что масса веществ, поступивших на технологическую операцию, равна массе полученных веществ. Закон сохранения энергии действует во всех случаях и повсюду, где одна форма энергии переходит в другую. Несмотря на обилие эмпирического материала о свойствах различных веществ и их соединений, особенностях протекания разнообразных реакций, в химии, до открытия в 1869 г. периодической системы химических элементов Д. И. Менделеева не существовало той объединяющей концепции, с которой можно было бы объяснить весь накопленный фактический материал. Было бы,
CuSO4 молекулярная масса соединения 63,5+32+4х16=162,5 это определяется по таблице менделеева. Fe молекулярная масса 55,8 У нас 40 граммов CuSO4. Процентное содержание меди равно отношению молекулярной массы меди к мол. массе сульфата меди =63,5/162,5 = 0.39 или 39%. В граммах у нас меди 0.39х40=15,6 грамма. Это вся медь. В продуктах реакции FeSO4 и Сu мол. масса FeSO4 = 55,8+32+4х16=151,8 мол масса Cu = 63,5 процентное содержание железа в сульфате железа равно отношению мол массы железа к мол массе сульфата железа = 55,8/151,8=0,368 или 36,8% железа у нас всего 12 грамм по условию, значит сульфата может быть не более чем 12/0,368=32,6 грамма. Если вес железа 12 грамм, а вес сульфата железа 32,6 грамм, значит вес SO4 в продуктах реакции 32,6-12=20,6 грамм. Ровно столько SO4 отнимется от исходного сульфата меди и прибавится к железу. Зная, что масса СuSO4 = 40 грамм, а масса всей меди 15,6 грамма, определим вес всего SO4, который есть в сульфате меди. 40-15,6=24,4 грамма. Из этих 24,4 грамма на реакцию с железом израсходовалось 20,6 грамм (это мы вычислили ранее) , значит неизрасходованного кислотного остатка осталось 24,4-20,6=3,8 грамма. Число положительное означает, что железо на реакцию израсходуется всё, а вот часть сульфата меди останется в растворе (ответ на первый вопрос задачи) . зная, что процент меди в сульфате меди = 39% определим какой процент SO4 в сульфате меди. 100%-39%=61% или 0,61. Значит 3,8 грамма кислотного остатка это 61% всего сульфата меди, а масса всего сульфата меди, который остался 3,8/0,61=6,23 грамма. Таким образом, зная массу оставшегося сульфата меди вычтем из неё массу кислотного остатка (непрореагировавшего) и получим массу непрореагировавшей меди 6,23-3,8 = 2,43 грамма. Зная массу всей меди которая у нас в наличии (см. ранее) 15,6 грамма, вычтем из неё массу меди невыделившейся из сульфата меди 2,43 грамма 15,6-2,43=13,17 и получим значение массы меди которая выделилась: ) 13,7 грамм.
Закономерности, происходящие в веществах, процессы их превращения, при которых происходит изменение их состава и структуры, изучает раздел естествознания — химия. Она занимается явлениями природы, сопровождающими химические изменения вещества, изучает причины и законы управления химическими процессами, а также рассматривает составные части вещества и их применение на практике. Отдельные химические процессы (получение металлов из руд, крашение тканей и др.) использовались еще на заре становления человеческой цивилизации. Позже, в III—IV вв., зародилась алхимия, задачей которой было превращение неблагородных металлов в благородные (золото, серебро). Начиная с эпохи Возрождения химические исследования все в большей мере стали использовать для практических целей (металлургия, стеклоделие, керамика, получение красок и т. д.).
Химию можно определить как науку, изучающую вещества и процессы их превращения, сопровождающиеся изменением состава и структуры. Химический процесс сопровождается изменением состава веществ, их структуры и обязательно энергетическими изменениями в реагирующей системе. Вследствие взаимосвязанности форм движения материи и их взаимопре-
197
вращаемости в результате химических реакций имеет место превращение химической энергии в теплоту, свет и проч. Химия нужна человечеству для того, чтобы из вещества природы получать по возможности все необходимое — металлы, цемент, бетон, керамику, фарфор, стекло, каучук, пластмассы, искусственные волокна, лекарства и многое другое.
Основой химической науки является атомно-молекулярное учение (АМУ), закон сохранения материи, периодический закон и теория строения вещества, учение о химическом процессе (кинетика). Химические процессы подчиняются всеобщим законам природы — закону сохранения массы вещества и закону сохранения энергии. Закон сохранения массы вещества открыли М. В. Ломоносов и А. Л. Лавуазье почти независимо друг от друга. Они далеко продвинули развитие химии тем, что при химических реакциях применили физические методы, в частности взвешивание. Закон сохранения массы в химических процессах можно сформулировать так: сумма масс исходных веществ (соединений) равна сумме масс продуктов химической реакции. Например, при разложении воды масса воды будет равна сумме массы водорода и массы кислорода. Из закона сохранения вещества вытекает, что вещество нельзя ни создать из ничего, ни уничтожить совсем. Количественным выражением закона сохранения массы веществ применительно к производственному химическому процессу является материальный баланс, в котором подтверждается, что масса веществ, поступивших на технологическую операцию, равна массе полученных веществ. Закон сохранения энергии действует во всех случаях и повсюду, где одна форма энергии переходит в другую.
Несмотря на обилие эмпирического материала о свойствах различных веществ и их соединений, особенностях протекания разнообразных реакций, в химии, до открытия в 1869 г. периодической системы химических элементов Д. И. Менделеева не существовало той объединяющей концепции, с которой можно было бы объяснить весь накопленный фактический материал. Было бы,