Для составления формул бинарных соединений надо знать валентность или степень окисления составляющих элементов. На первых порах речь идет обычно о валентности. Оксиды. Валентность кислорода в оксидах всегда равна 2 (часто ее пишут римскими цифрами) . Предположим, вы хотите написать оксид меди. Предварительно надо знать что медь бывает двухвалентной (чаще) и одновалентной (реже) . Оксид двухвалентной меди CuO. Чтобы валентности обоих элементов были одинаковыми, потому что это число связей между ними (не будем уточнять тип связи) . Здесь у меди 2 и у кислорода тоже 2. Оксид одновалентной меди. Пишете сначала CuO, потом видите, что надо уравнять валентности. Для этого у меди надо поставить нижний индекс 2. Т. е. оксид Сu2O Общая валентность меди стала 2, как и у кислорода. Оксид алюминия. У него всегда валентность 3. Пишете AlO. Для уравнивания валентностей надо взять два атома алюминия и три атома кислорода. Тогда общая валентность алюминия будет 6, у кислорода - тоже 6. Формула Al2O3. Хлориды. Хлор в хлоридах всегда одновалентный. Хлориды олова Sn. Олово бывает двух- и четырехвалентным. Хлорид олова (II) SnCl2, хлорид олова (IV) SnCl4 Сульфиды. Сера в сульфидах двухвалентна. Составление формул сульфидов аналогично составлению формул оксидов. Сульфид железа (III) Fe2S3. Сульфид железа (II) FeS. Дополнение. Все сказанное не относится к соединениям, где атомы одного и того же элемента связаны между собой. Например, пероксид водорода Н2О2 . Структурная формула Н-О-О-Н. Здесь, несмотря на двухвалентность кислорода такая формула, потому что атомы кислорода связаны между собой. То же самое в бинарных органических соединениях, где атомы углерода образуют цепи и кольца.
Тут следует отметить два момента. Первый состоит в том, что глина обладает очень низкой теплопроводностью и жидкость в глиняной посуде долго сохраняет первоначальную температуру, особенно если кувшин закрыть сверху. Но не это самое интересное. Гораздо забавнее эффект охлаждения жидкости, который наблюдается при нагреве кувшина солнцем. Как это работает? Глина материал пористый и все эти мелкие поры заполняются тонкими прослойками воды. При нагреве стенок нагревается в первую очередь вода в этих порах и начинает быстрее испаряться. Но испарение возможно только при поглощении энергии, которую в виде тепла этот процесс отнимает не только от теплых стенок кувшина, но и от жидкости в кувшине, потому что для испарения 1 грамма воды энергии требуется в несколько раз больше, чем для его нагрева. В результате вода в кувшине охлаждается.
2,3-диметилпентан
Объяснение: