Продолжительное время электрические и магнитные поля изучались раздельно. Но в 1820 году датский учёный Ханс Кристиан Эрстед во время лекции по физике обнаружил, что магнитная стрелка поворачивается возле проводника с током (см. Рис. 1). Это доказало магнитное действие тока. После проведения нескольких экспериментов Эрстед обнаружил, что поворот магнитной стрелки зависел от направления тока в проводнике.
Опыт Эрстеда
Рис. 1. Опыт Эрстеда
Для того чтобы представить, по какому принципу происходит поворот магнитной стрелки вблизи проводника с током, рассмотрим вид с торца проводника (см. Рис. 2, ток направлен в рисунок, – из рисунка), возле которого установлены магнитные стрелки. После пропускания тока стрелки выстроятся определённым образом, противоположными полюсами друг к другу. Так как магнитные стрелки выстраиваются по касательным к магнитным линиям, то магнитные линии прямого проводника с током представляют собой окружности, а их направление зависит от направления тока в проводнике.
Расположение магнитных стрелок возле прямого проводника с током
Рис. 2. Расположение магнитных стрелок возле прямого проводника с током
Для более наглядной демонстрации магнитных линий проводника с током можно провести следующий опыт. Если вокруг проводника с током высыпать железные опилки, то через некоторое время опилки, попав в магнитное поле проводника, намагнитятся и расположатся по окружностям, которые охватывают проводник (см. Рис. 3).
Расположение железных опилок вокруг проводника с током
Рис. 3. Расположение железных опилок вокруг проводника с током (Источник)
Правило буравчика. Правило правой руки
Для определения направления магнитных линий возле проводника с током существует правило буравчика (правило правого винта) – если вкручивать буравчик по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление линий магнитного поля тока (см. Рис. 4).
Правило буравчика
Рис. 4. Правило буравчика (Источник)
Также можно использовать правило правой руки – если направить большой палец правой руки по направлению тока в проводнике, то четыре согнутых пальца укажут направление линий магнитного поля тока (см. Рис. 5).
Правило правой руки
Рис. 5. Правило правой руки (Источник)
Оба указанных правила дают один и тот же результат и могут быть использованы для определения направления тока по направлению магнитных линий поля.
Разветвление: Взаимодействие проводников с током в опытах Ампера
После открытия явления возникновения магнитного поля вблизи проводника с током Эрстед разослал результаты своих исследований большинству ведущих учёных Европы. Получив эти данные, французский математик и физик Ампер приступил к своей серии экспериментов и через некоторое время продемонстрировал публике опыт по взаимодействию двух параллельных проводников с током. Ампер установил, что если по двум расположенным параллельно проводникам течёт электрический ток в одну сторону, то такие проводники притягиваются (см. Рис. 6 б) если ток течёт в противоположные стороны – проводники отталкиваются (см. Рис. 6 а).
Опыт Ампера
Рис. 6. Опыт Ампера (Источник)
Из своих опытов Ампер сделал следующие выводы:
1. Вокруг магнита, или проводника, или электрически заряженной движущейся частицы существует магнитное поле.
2. Магнитное поле действует с некоторой силой на заряженную частицу, движущуюся в этом поле.
3. Электрический ток представляет собой направленное движение заряженных частиц, поэтому магнитное поле действует на проводник с током.
Разветвление: Задача на применение правила буравчика для прямого проводника с током
На рисунке 7 изображён проволочный прямоугольник, направление тока в котором показано стрелками. Используя правило буравчика, начертить возле сторон прямоугольника по одной магнитной линии, указав стрелкой её направление.
Иллюстрация к задаче
Рис. 7. Иллюстрация к задаче
Решение
Вдоль сторон прямоугольника (проводящей рамки) вкручиваем мнимый буравчик по направлению тока.
Вблизи правой боковой стороны рамки магнитные линии будут выходить из рисунка слева от проводника и входить в плоскость рисунка справа от него. Это обозначается с правила стрелы в виде точки слева от проводника и крестика справа от него (см. Рис. 8).
Аналогично определяем направление магнитных линий возле других сторон рамки.
Иллюстрация к задаче
Рис. 8. Иллюстрация к задаче
Образование магнитного поля вблизи катушки с током (соленоида)
Опыт Ампера, в котором вокруг катушки устанавливались магнитные стрелки, показал, что при протекании по катушке тока стрелки к торцам соленоида устанавливались разными полюсами вдоль мнимых линий (см. Рис. 9). Это явление показало, что вблизи катушки с током есть магнитное поле, а также что у соленоида есть магнитные полюса. Если изменить направление тока в катушке, магнитные стрелки развернутся.
Дано:
m(технического CaCO₃)=800г.
ω%(примесей в CaCO₃ )=12,%
Vm=22,4л./моль
V(CO₂)-?
1. Определим массу чистого карбоната кальция:
m(CaCO₃)=m(технического CaCO₃)xω%(примесей в CaCO₃ )÷100%
m(CaCO₃)=800г.×12,%÷100%=96г.
2. Определим молярную массу карбоната кальция и его количество вещества в 96г:
M(CaCO₃)=100г./моль
n₁(CaCO₃)=96г÷100г./моль=0,96моль
3. Запишем уравнение реакции разложения карбоната кальция:
CaCO₃ = CaO + CO₂
по уравнению реакции:
n(CaCO₃)=n(CO₂)=1моль
по условию задачи:
n₁(CaCO₃)=n₁(CO₂)=0,96моль
4. Определим объем оксида углерода(IV) :
n₁(CO₂)=0,96моль
V(CO₂)=n₁(CO₂)x22,4л./моль
V(CO₂)=0,96мольх22,4л./моль=21,5л.
5. ответ: при разложении 800г. технического карбоната кальция с массовой долей примесей 12% образовалось 21,5л. углекислого газа (оксида углерода(IV).
1) m(BaCL2)= m р-ра*ω=40*0,2= 8 г
2)v(BaCl2)= m/M+ 8 /208=0.04 моль
3) m(K2CO3)=m р-ра*ω= 30*0,25= 7,5 г
4) v(K2CO3)=m/M= 7,5/138=0,05 моль
По уравнению соотношение коэффициентов 1:1,поэтому считаем по тому,чего меньше,то есть по хлориду бария:
5) v(BaCO3)= v(BaCl2)= 0,04 моль
6) m(BaCO3)=v*M= 0,04* 197=7,88 г