Углерод (С), кремний (Si), германий (Ge), олово (Sn), свинец (РЬ) — элементы 4 группы главной подгруппы ПСЭ. На внешнем электронном слое атомы этих элементов имеют 4 электрона: ns2np2. В подгруппе с ростом порядкового номера элемента увеличивается атомный радиус, неметаллические свойства ослабевают, а металлические усиливаются: углерод и кремний - неметаллы, германий, олово, свинец — металлы.
б) Элементы этой подгруппы проявляют как положительную, так и отрицательную степени окисления: —4, +2, +4.
в) Высшие оксиды углерода и кремния (С02, Si02) обладают кислотными свойствами, оксиды остальных элементов подгруппы - амфотерны (Ge02, Sn02, Pb02).
г) Угольная и кремниевая кислоты (Н2СО3, H2SiO3) — слабые кислоты. Гидроксиды германия, олова и свинца амфотерны, проявляют слабые кислотные и основные свойства: H2GeO3= Ge(OH)4, H2SnO3 = Sn(ОН)4, Н2РЬО3 = Pb(OH)4.
д) Водородные соединения:
СН4; SiH4, GeH4. SnH4, PbH4. Метан — CH4 — прочное соединение, силан SiH4 - менее прочное соединение.
Схемы строения атомов углерода и кремния, общие и отличительные свойства.
С lS22S22p2;
Si 1S22S22P63S23p2.
Объяснение:
Название органические вещества появилось на ранней стадии развития химии во время господства виталистических воззрений, продолжавших традицию Аристотеля и Плиния Старшего о разделении мира на живое и неживое. Вещества при этом разделялись на минеральные — принадлежащие царству минералов, и органические — принадлежащие царствам животных и растений. Считалось, что для синтеза органических веществ необходима особая «жизненная сила» (лат. vis vitalis), присущая только живому, и поэтому синтез органических веществ из неорганических невозможен. Это представление было опровергнуто Фридрихом Вёлером в 1828 году путём синтеза «органической» мочевины из «минерального» цианата аммония, однако деление веществ на органические и неорганические сохранилось в химической терминологии и по сей день.Количество известных органических соединений составляет почти 27 млн. Таким образом, органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной — двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, то есть стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).
Классификация
Основные классы органических соединений биологического происхождения — белки, липиды, углеводы, нуклеиновые кислоты — содержат, помимо углерода, преимущественно водород, азот, кислород, серу и фосфор. Именно поэтому «классические» органические соединения содержат прежде всего водород, кислород, азот и серу — несмотря на то, что элементами, составляющими органические соединения, помимо углерода могут быть практически любые элементы.
Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.
Характерные свойства
Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений.
Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров — соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.Явление гомологии — существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу — гомологическую разницу CH2. Целый ряд физико-химических свойств в первом приближении изменяется симбатно по ходу гомологического ряда. Это важное свойство используется в материаловедении при поиске веществ с заранее заданными свойствами.
160,2г
Объяснение:
m(CH3COOH)=180*5.5%/100=9,9г -массa чистой уксусной кислоты в исходном 5.5%-ном растворе
общая масса уксусной кислоты в конечном растворе равна (9,9 + x)г
масса самого раствора — (180 + x) г
m(CH3COOH) = 100% ∙ (9,9 + x)/(180 + x)
100% ∙ (9,9 + x)/(180 + x) = 50%
(9,9 + x)/(180 + x) = 0,5
9,9 + x=0,5*(180 + x)
9,9 + x=90+0,5х
х-0,5х=90-9,9
0,5х=80,1
х=80,1/0,5=801/5
х=160,2г