Объяснение:
Минерал гипс после добычи и переработки широко используется в промышленности, строительстве, ремонте, медицине, как скульптурный материал и т. д. Обожжённый гипс применяют для отливок и слепков (барельефы, карнизы и т. д.), как вяжущий материал в строительном деле. Гипсовым раствором скреплены блоки Пирамиды Хеопса. Скульптурный гипс, так же как и медицинский, характеризуется чистотой и хорошим Этот материал широко используется в скульптуре для изготовления прочных форм или фигур, а также в стоматологии для изготовлении слепков зубов. Изделия из скульптурного гипса могут служить основой для декупажа или для росписи. Несмотря на то, что этот материал в застывшем виде является достаточно пористым и хрупким, он может применяться для изготовления уличной скульптуры и идеален для создания элементов интерьера и декоративных фигурок.
В наши дни природный гипс служит в основном сырьём для производства α-гипса и β-гипса. β-гипс (CaSO4·0,5H2O) — порошкообразный вяжущий материал, получаемый путём термической обработки природного двухводного гипса CaSO4·2H2O при температуре 150—180 градусов в аппаратах, сообщающихся с атмосферой. Продукт измельчения гипса β-модификации в тонкий порошок называется строительным гипсом или алебастром, при более тонком получают формовочный гипс или, при использовании сырья повышенной чистоты, медицинский гипс.
При низкотемпературной (95-100 °C) тепловой обработке в герметически закрытых аппаратах образуется гипс α-модификации, продукт измельчения которого называется высокопрочным гипсом.
В смеси с водой α и β-гипс твердеет, превращаясь снова в двуводный гипс, с выделением тепла и незначительным увеличением объема (приблизительно на 1 %), однако такой вторичный гипсовый камень имеет уже равномерную мелкокристаллическую структуру, цвет различных оттенков белого (в зависимости от сырья), непрозрачный и микропористый. Эти свойства гипса находят применение в различных сферах деятельности человека.
Фосфор и его соединения
Фосфор, как и азот – элемент V A группы. Значит, на внешнем энергетическом уровне у него 5 электронов. Атом фосфора в соединениях может проявлять различные степени окисления: от -3 до +5. Атомы фосфора по сравнению с атомами азота имеют больший радиус, меньшее значение электроотрицательности. Фосфор чаще проявляет в соединениях степень окисления +5.
При взаимодействии с кислородом фосфор проявляет восстановительные свойства, а в реакциях с металлами – окислительные. В реакциях фосфора с металлами образуются соединения – фосфиды. Например, в реакции с фосфором образуется фосфид кальция.
В этой реакции кальций повышает свою степень окисления с 0 до +2, а фосфор понижает с 0 до -3. Каждый атом кальция отдаёт по 6 электронов молекуле фосфора. При этом кальция является восстановителем, а фосфор – окислителем.
Так, в реакции оксида фосфора (V) с оксидом кальция образуется соль – фосфат кальция. В реакции оксида фосфора (V) с гидроксидом натрия образуется соль – фосфат натрия и вода.
При взаимодействии оксида фосфора (V) с избытком воды образуется фосфорная кислота.
Фосфорная кислота представляет собой твёрдое прозрачное кристаллическое вещество, хорошо растворимое в воде в любых соотношениях. Это слабая кислота, поэтому в водном растворе диссоциирует ступенчато: на первой ступени образуется катион водорода и дигидрофосфат-ион, на второй ступени опять образуется катион водорода и гидрофосфат-ион, а на третьей ступени образуется катион водорода и фосфат-ион.
Фосфорная кислота проявляет свойства, характерные для кислот. Она взаимодействует с металлами, стоящими в ряду активности до водорода. Например, в реакции фосфорной кислоты с цинком, образуется соль – дигидрофосфат цинка и выделяется газ – водород.
Фосфорная кислота вступает во взаимодействие с основными оксидами. Так в реакции оксида лития с фосфорной кислотой образуется соль – фосфат лития и вода.
Фосфорная кислота реагирует и с основаниями. В реакции гидроксида натрия с фосфорной кислотой образуется соль – фосфат натрия и вода.
Фосфорная кислота – трёхосновная кислота, поэтому она может образовывать кроме средних солей кислые соли. Например, Ca3(PO4)2– средняя соль, она называется фосфат кальция, CaHPO4 – кислая соль и называется гидрофосфат кальция, Ca(H2PO4)2 тоже кислая соль и называется дигидрофосфат кальция. Фосфаты всех металлов в воде нерастворимы (исключение – фосфаты щелочных металлов), дигидрофосфаты всех металлов хорошо растворимы, а гидрофосфаты занимают промежуточное положение.
Качественной реакцией на фосфат-ион является реакция с нитратом серебра, при этом образуется фосфат серебра (I) – осадок жёлтого цвета и соль – нитрат натрия.
В природе постоянно происходит круговорот фосфора. Фосфор из почвы извлекается растениями, а животные получают фосфор с растительной пищей. После отмирания растительных и животных организмов фосфор снова переходит в почву.
Фосфорная кислота используется как катализатор в органическом синтезе, для производства кормовых добавок, придании кисловатого вкуса безалкогольным напиткам, осветления сахара. Но основная часть фосфорной кислоты расходуется на производство фосфатов, использующихся в качестве минеральных удобрений. Фосфаты применяются и в медицине, для пропитки тканей, древесины и пластмасс с целью придания им огнестойкости, также при производстве стиральных порошков.
Таким образом, фосфор является элементом V A группы. На внешнем энергетическом уровне у него 5 электронов, для него характерны степени окисления от -3 до +5, но наиболее типична +5. В природе он встречается в виде соединений – фосфоритов и апатитов. Фосфор образует несколько аллотропных модификаций: белый, красный и чёрный фосфор. Наиболее рас соединениями фосфора являются – оксид фосфора (III), оксид фосфора (V), фосфин и фосфорная кислота. В реакциях с металлами фосфор проявляет окислительные свойства, а в реакции с кислородом – восстановительные. Фосфорная кислота – трёхосновная кислота, которая образует три вида солей: фосфаты, гидрофосфаты и дигидрофосфаты. Качественным реактивом на фосфат-ион является нитрат серебра один, потому что в результате взаимодействия образуется осадок жёлтого цвета. Фосфор и его соединения имею большое значение в химической промышленности.
Используя Периодический закон, Д. И. Менделеев стал первым исследователем, сумевшим решить проблемы прогнозирования в химии. Это проявилось уже через несколько лет после создания Периодической системы элементов, когда были открыты предсказанные Менделеевым новые химические элементы. Периодический закон также уточнить многие особенности химического поведения уже открытых элементов. Успехи атомной физики, включая ядерную энергетику и синтез искусственных элементов, стали возможными лишь благодаря Периодическому закону. В свою очередь, они расширили и углубили сущность закона Менделеева, расширили пределы Периодической системы элементов.
2. каково значение открытия радиоактивности в развитии химии как науки ?
Самопроизвольное превращение атомов одного элемента в атомы других элементов, сопровождающееся испусканием частиц и жесткого электромагнитного излучения Через 48 часов она падает в сотни раз и можно выйти из убежища, чтобы занять более безопасную позицию, через две недели она падает в 1000 раз
МОЖНО СЧИТАТЬ ОТКРЫТИЕМ ВЕКА!
многие люди говарили значение открытия радиоактивности - что в преступных руках радий быть очень опасным, и в связи с этим следует задать такой вопрос: является ли познание тайн природы выгодным для человечества, достаточно ли человечество созрело, чтобы извлекать из него только пользу, или же это познание для него вредоносно? В этом отношении очень характерен пример с открытиями Нобеля: мощные взрывчатые вещества дали возможность проводить удивительные работы. Но они же оказываются страшным орудием разрушения в руках преступных властей, которые вовлекают народы в войны. Я лично принадлежу к людям, мыслящим как Нобель, а именно, что человечество извлечет из новых открытий больше блага, чем зла .
3. почему изменение заряда ядра атома приводит к изменению химических свойств элементов ?
Изменение свойств элементов в периодах и группах
В периодах с увеличением зарядов атомных ядер элементов (слева направо)
металлические (восстановительные отдавать электроны) свойства ослабевают,
неметаллические (окислительные принимать электроны) усиливаются, т. к.
oВозрастает число электронов на внешнем уровне атома;
oЧисло энергетических уровней в атомах остается постоянным;
oУменьшается радиус атомов, т. к. электроны сильнее притягиваются ядром вследствие возрастания его заряда.
высшая положительная степень окисления увеличивается от +1 до +8;
низшая степень окисления увеличивается от - 4 до -1;
в соединениях элементов происходит усиление кислотных и ослабление основных свойств. Например, во 2 периоде: оксид лития – основный, оксид бериллия – амфотерный, остальные – кислотные (соединение фтора с кислородом – фторид кислорода, а не оксид фтора, т. к. фтор – более электроотрицательный элемент, чем кислород) .
•В малых периодах по мере увеличения порядкового номера элемента увеличивается число электронов на внешнем слое. Поэтому свойства элементов изменяются скачкообразно.
•В больших периодах у элементов заполняется второй снаружи электронный слой, а число электронов на внешнем слое не изменяется. Поэтому свойства элементов и их соединений изменяются плавно (переходные металлы) .
•В семействах лантаноидов и актиноидов заполняется третий снаружи электронный слой. Свойства этих элементов изменяются ещё медленнее.
В группах (главных подгруппах) с увеличением зарядов атомных ядер элементов (сверху вниз)
металлические свойства (восстановительные отдавать внешние электроны) усиливаются,
неметаллические (окислительные удерживать внешние электроны и принимать новые) ослабевают, т. к.
oЧисло электронов на внешнем уровне атомов остается одинаковым;
oУвеличивается число энергетических уровней в атоме;
oУвеличивается радиус атомов.
Например, литий – твёрдый металл, а натрий легко режется ножом; натрий энергичнее, чем литий, реагирует с водой.
высшая положительная степень окисления постоянна;
низшая степень окисления не изменяется и равна (8- n ), где n – номер группы для (4 – 7 групп) .
основные свойства соединений усиливаются, кислотные ослабевают.