Вот такой ответ как по мне :
Температура. Ферменты теряют активность при нагревании; при температуре от 50 до 60° С большинство ферментов быстро инактивируются. Инактивация ферментов необратима, так как после охлаждения активность не восстанавливается. Этим можно объяснить, почему непродолжительное воздействие высокой температуры убивает большинство организмов: часть их ферментов инактивируется и обмен веществ продолжаться не может.Известно несколько исключений из этого правила. Некоторые виды примитивных растений — сине-зеленых водорослей — живут в горячих источниках, например в источниках Йеллоустонского национального парка, где температура воды достигает почти 100° С. Эти водоросли обусловливают яркую окраску травертиновых террас вокруг горячих источников. При температурах ниже той, при которой наступает инактивация ферментов (около 40° С), скорость большинства ферментативных реакций, как и скорость других химических реакций, примерно удваивается с повышением температуры на каждые 10° С.Замораживание обычно не приводит к инактивации ферментов; при низких температурах ферментативные реакции идут очень медленно или не идут вовсе, но при повышении температуры до нормальной каталитическая активность возобновляется.Кислотность. Ферменты чувствительны к изменениям pH, т. е. к изменению кислотности или щелочности среды. Пепсин — фермент, переваривающий белки, выделяемый слизистой оболочкой желудка, — замечателен тем, что он активен только в очень кислой среде и лучше всего действует при pH 2. Трипсин, расщепляющий белки и выделяемый поджелудочной железой, служит примером фермента, проявляющего оптимальную активность в щелочной среде, при pH около 8,5. Большинство внутриклеточных ферментов имеют оптимумы pH близ нейтральной точки, а в кислой или щелочной среде их активность значительно ниже; под действием сильных кислот и оснований они необратимо инактивируются.Концентрация фермента, субстрата и кофакторов. Если pH и температура ферментной системы постоянны и субстрат имеется в избытке, скорость реакции прямо пропорциональна количеству фермента. Эту зависимость используют для определения содержания того или иного фермента в тканевом экстракте. При постоянстве pH, температуры и концентрации фермента в системе начальная скорость реакции возрастает вплоть до известного предела пропорционально количеству субстрата. Если ферментная система нуждается в каком-либо коферменте или специфическом ионе-активаторе, то концентрация этого вещества или иона может при определенных обстоятельствах определять общую скорость реакции.Яды, отравляющие ферменты. Некоторые ферменты специфически чувствительны к определенным ядам: цианиду, иодуксусной кислоте, фториду, люизиту и т. д., и даже очень низкие концентрации этих ядов инактивируют ферменты. Цитохромоксидаза — один из ферментов системы переноса электронов — особенно чувствительна к цианиду; при отравлении цианидом смерть наступает вследствие инактивации ферментов, относящихся к группе цитохромов. Одну из ферментативных реакций, участвующих в расщеплении глюкозы, тормозит фторид, а другую — йодоуксусная кислота; биохимики использовали такого рода ингибиторы для изучения свойств и последовательности действия множества различных ферментных систем.Оказавшись в ненадлежащем месте, ферменты сами могут действовать как яды. Например, внутривенной инъекции 1 мг кристаллического трипсина достаточно для того, чтобы убить крысу. Действие различных ядов змей, пчел и скорпионов обусловлено тем, что эти яды содержат ферменты, разрушающие клетки крови или другие ткани.
1.
Дано:
m(раствораH₂SO₄)=200г.
ω%=10%
Vm=22,4л./моль
V(H₂)-?
1. Определим массу серной кислоты в 200г. ее 10% раствора:
m(H₂SO₄)=ω%xm(раствораH₂SO₄)÷100%
m(H₂SO₄)=10%×200г.÷100%=20г.
2. Определим молярную массу серной кислоты и ее количество вещества в 20г.:
M(H₂SO₄)=98г./моль
n₁(H₂SO₄)=m(H₂SO₄)÷M(H₂SO₄)=20г.÷98г./моль=0,2моль
3. H₂SO₄+Zn=ZnSO₄+H₂
по уравнению реакции:
n(H₂SO₄)=1моль n(H₂)=1моль
по условию задачи:
n₁(H₂SO₄)=0,2моль n₁(H₂)=0,2моль
4. Определим объем водорода количеством вещества 0,2моль:
V(H₂)= n₁(H₂)xVm
V(H₂)=0,2мольх22,4л./моль=4,48л.
5. ответ: образуется 4,48л. водорода при взаимодействии цинка с 200г 10% раствора серной кислоты.
2.
Дано:
m(раствораCuSO₄)=160кг.
ω%=10%
m(Fe)=12кг.
m(Cu)-?
1. Определим массу сульфата меди в 160кг. ее 10% раствора:
m(СuSO₄)=ω%xm(раствораCuSO₄)÷100%
m(CuSO₄)=10%×160г.÷100%=16кг.
2. Определим молярную массу сульфата меди и ее количество вещества в 16кг.:
M(CuSO₄)=160кг./кмоль
n₁(CuSO₄)=m(CuSO₄)÷M(CuSO₄)=16кг.÷160кг./кмоль=0,1кмоль
3. Оапределим молярную массу железных опилок и их количество вещества в 12кг.:
M(Fe)=56кг./кмоль
n₁(Fe)=m(Fe)÷M(Fe)=12кг÷56кг./кмоль=0,2кмоль
4. CuSO₄+Fe=FeSO₄+Cu
по уравнению реакции:
n(CuSO₄)=1кмоль n(Fe)=1кмоль
по условию задачи:
n₁(CuSO₄)=0,1кмоль n₁(Fe)=0,2кмоль
Железные опилки даны в избытке. Решаем задачу используя количество вещества сульфата меди:
по уравнению реакции:
n(CuSO₄)=1кмоль n(Cu)=1кмоль
по условию задачи:
n₁(CuSO₄)=0,1кмоль n₁(Cu)=0,1кмоль
5. Определим молярную массу меди и ее массу количеством вещества 0,1кмоль:
M(Cu)=64кг./кмоль
m(Cu)=n₁(Cu)xM(Cu)
m(Cu)=0,1кмольх64кг./кмоль=6,4кг.
7. ответ: при взаимодействии 60 кг 10%раствора сульфата меди с 12 кг. железных опилок выделилось 6,4кг. меди.
О2-взаимодействует почти со всеми веществами ну вот некоторые примеры:Взаимодействие c металлами.В результате реакции образуется оксид этого металла. 2Сu + O2 = 2CuO.
Взаимодействие с неметаллами. При этом образуется оксид неметалла. S + O2 = SO2. (над равно - температура) С + О2 = СО2. (над равно - температура)
Взаимодействие с некоторыми сложными веществами
СН4 + 2О2 = СО2 + 2Н2О.
Н2-примеры:1) с металлами:2Na + H2 = 2NaH
2) c неметаллами
S +H2 =H2S
3) c кислородом
2H2+O2=2H2O
4) c оксидами
CuO +H2 = Cu + H2O