1. Химическая реакция инициируется активными частицами реагентов, отличными от насыщенных молекул: радикалами, ионами, координационно ненасыщенными соединениями. Реакционная исходных веществ определяется наличием в их составе этих активных частиц.
Химия выделяет три основных фактора, влияющих на химическую реакцию:
температура; катализатор (если нужен); природа реагирующих веществ.Из них важнейшим является последний. Именно природа вещества определяет его образовывать те или иные активные частицы. А стимулы лишь осуществиться этому процессу.
2. Активные частицы находятся в термодинамическом равновесии с исходными насыщенными молекулами.
3. Активные частицы взаимодействуют с исходными молекулами по цепному механизму.
4. Взаимодействие между активной частицей и молекулой реагента происходит в три стадии: ассоциации, электронной изомеризации и диссоциации.
На первой стадии протекания химической реакции - стадии ассоциации активная частица присоединяется к насыщенной молекуле другого реагента с химических связей, которые слабее, чем ковалентные. Ассоциат может быть образован с ван-дер-ваальсовой, водородной, донорно-акцепторной и динамической связи.
На второй стадии протекания химической реакции - стадии электронной изомеризации происходит важнейший процесс - преобразование сильной ковалентной связи в исходной молекуле реагента в более слабую: водородную, донорно-акцепторную, динамическую, а то и ван-дер-ваальсовую.
5. Третья стадия взаимодействия между активной частицей и молекулой реагента - диссоциация изомеризованного ассоциата с образованием конечного продукта реакции - является лимитирующей и самой медленной стадией всего процесса.
Великая «хитрость» химической природы веществИменно эта стадия определяет общие энергетические затраты на весь трехстадийный процесс протекания химической реакции. И здесь заключена великая «хитрость» химической природы веществ. Самый энергозатратный процесс - разрыв ковалентной связи в реагенте - произошел легко и изящно, практически не заметно во времени по сравнению с третьей, лимитирующей стадией реакции. В нашем примере так легко и непринужденно связь в молекуле водорода с энергией 430 кДж/моль преобразовалась в ван-дер-ваальсовую с энергией в 20 кДж/моль. И все энергозатраты реакции свелись к разрыву этой слабой ван-дер-ваальсовой связи. Вот почему энергетические затраты, необходимые для разрыва ковалентной связи химическим путем, значительно меньше затрат на термическое разрушение этой связи.
Таким образом, теория элементарных взаимодействий наделяет строгим физическим смыслом понятие «энергия активации». Это энергия, необходимая для разрыва соответствующей химической связи в ассоциате, образование которого предшествует получению конечного продукта химической реакции.
6. Не зависимо от инициирования реакции (температура, катализатор, излучение, растворитель и т.п.) в основе протекания химической реакции лежит одно и то же явление: образование химически активных частиц.
Мы еще раз подчеркиваем единство химической природы вещества. Оно может вступить в реакцию лишь в одном случае: при появлении активной частицы. А температура, катализатор и другие факторы, при всем их физическом различии, играют одинаковую роль: инициатора.
ответ:Алка́ны (также насыщенные углеводороды, парафины) — ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой CnH2n+2.
Все алканы относятся к более крупному классу алифатических углеводородов. Алканы являются насыщенными углеводородами, то есть содержат максимально возможное число атомов водорода для заданного числа атомов углерода. Каждый атом углерода в молекулах алканов находится в состоянии sp³-гибридизации — все 4 гибридные орбитали атома С идентичны по форме и энергии, 4 связи направлены в вершины тетраэдра под углами 109°28'. Связи C—C представляют собой σ-связи, отличающиеся низкой полярностью и поляризуемостью. Длина связи C—C составляет 0,154 нм, длина связи C—H — 0,1087 нм.
Простейшим представителем класса является метан (CH4). Углеводород с самой длинной цепью — нонаконтатриктан C390H782 синтезировали в 1985 году английские химики И. Бидд и М. К. Уайтинг[1].
Объяснение:
Число молекул можно рассчитать, зная число Авогадро и молярную массу.
Молярная масса Р2О5 М = (2*31 + 5*16)г/моль = 142г/моль
Число молекул N = N(Авогадро)*m/M = 6,02*10^23*14,2/142 = 6,02*10^22