CnH2n,sp2 гибридизация В природе этот газ практически не встречается: он образуется в незначительных количествах в тканях растений и животных как промежуточный продукт обмена веществ. Попутно это — самое производимое органическое соединение в мире. Газ этилен служит сырьем для получения полиэтилена.Свойства этиленаЭтилен (другое название — этен) — химическое соединение, описываемое формулой С2H4. В природе этилен практически не встречается. Это бесцветный горючий газ со слабым запахом. Частично растворим в воде (25,6 мл в 100 мл воды при 0°C), этаноле (359 мл в тех же условиях). Хорошо растворяется в диэтиловом эфире и углеводородах.Этилен является простейшим алкеном (олефином). Содержит двойную связь и поэтому относится к ненасыщенным соединениям. Играет чрезвычайно важную роль в промышленности, а также является фитогормоном.Сырье для полиэтилена и не толькоЭтилен — самое производимое органическое соединение в мире; общее мировое производство этилена в 2005 году составило 107 миллионов тонн и продолжает расти на 4–6% в год. Источником промышленного получения этилена является пиролиз различного углеводородного сырья, например, этана, пропана, бутана, содержащихся в попутных газах нефтедобычи; из жидких углеводородов — низкооктановые фракции прямой перегонки нефти. Выход этилена – около 30%. Одновременно образуется пропилен и ряд жидких продуктов (в том числе ароматических углеводородов).При хлорировании этилена получается 1,2-дихлорэтан, гидратация приводит к этиловому спирту, взаимодействие с HCl – к этилхлориду. При окислении этилена кислородом воздуха в присутствии катализатора образуется окись этилена. При жидкофазном каталитическом окислении кислородом получается ацетальдегид, в тех же условиях в присутствии уксусной кислоты – винилацетат. Этилен является алкилирующим агентом , например, в условиях реакции Фриделя-Крафтса алкилировать бензол и другие ароматические соединения. Этилен полимеризоваться в присутствии катализаторов как самостоятельно, так и выступать в роли сомономера, образуя обширный ряд полимеров с различными свойствами.ПрименениеЭтилен является одним из базовых продуктов промышленной химии и стоит в основании ряда цепочек синтеза. Основное направление использования этилена — в качестве мономера при получении полиэтилена (наиболее крупнотоннажный полимер в мировом производстве). В зависимости от условий полимеризации получают полиэтилены низкого давления и полиэтилены высокого давления.Также полиэтилен применяют для производства ряда сополимеров, в том числе с пропиленом, стиролом, винилацетатом и другими. Этилен является сырьем для производства окиси этилена; как алкилирующий агент – при производстве этилбензола, диэтилбензола, триэтилбензола.Этилен применяют как исходный материал для производства ацетальдегида и синтетического этилового спирта. Также он используется для синтеза этилацетата, стирола, винилацетата, хлористого винила; при производстве 1,2-дихлорэтана, хлористого этила.Этилен используют для ускорения созревания плодов — например, помидоров, дынь, апельсинов, мандаринов, лимонов, бананов; дефолиации растений, снижения предуборочного опадения плодов, для уменьшения прочности прикрепления плодов к материнским растениям, что облегчает механизированную уборку урожая.В высоких концентрациях этилен оказывает на человека и животных наркотическое действие.
Аморфные тела – это твердые тела, которые не имеют кристаллической структуры. к ним относятся стекла (искусственные и вулканические), смолы (естественные и искусственные), клеи, сургуч, эбанит, пластмассы и т. п. аморфные тела при расщеплении не образуют кристаллических граней. в таких телах частицы находятся рядом друг с другом и не имеют строгой . поэтому они либо вязкие, либо густые. вязкость аморфных тел — непрерывная функция температуры. при внешних воздействиях аморфные тела одновременно , как твердые тела, и текучие, как жидкости. если воздействие было недолгим, то при сильном ударе они раскалываются на куски как твердые тела. если же воздействие было долгим, то они текут. так, например, если смолу положить на твердую поверхность, то она начнет растекаться. причем чем выше будет ее температура, тем быстрее она будет растекаться. если мелкими частями аморфного тела заполнить какой-либо сосуд, то через некоторое время эти части сольются в одно целое и примут форму сосуда. это характерно, например, для смолы. аморфные тела не имеют определенной точки плавления. вместо нее они температурным интервалом размягчения. при нагревании они постепенно переходят в жидкое состояние. аморфные вещества могут быть в двух состояниях: стеклообразном или расплавленном. первое состояние может быть вызвано низкой температурой, второе – высокой. от температуры зависит и вязкость аморфных тел: чем ниже температура, тем выше вязкость, и наоборот. также аморфные тела изотропны. свойства для них по всем направлениям одинаковы. в естественных условиях они не правильной формой. исследования показали, что их структура аналогична структуре жидкостей. аморфные вещества могут переходить в кристаллическое состояние самопроизвольно. это связано с тем, что в кристаллическом состоянии внутренняя энергия вещества меньше, чем в аморфном. примером этого процесса может служить помутнение стекол со временем.