ответ:
амины проявляют ярко выраженные основные свойства. они являются донорами электронной пары (основания льюиса), и в частности предоставляют пару электронов на свободную орбиталь н+ (сродство к протону – основность по бренстеду).
за счет +i эффекта алкильных групп, алифатические амины являются более сильными основаниями, чем аммиак. при увеличении количества алкильных групп (при переходе от вторичных к третичным аминам) основность насколько снижается за счет стерических затруднений доступности неподеленной пары электронов. для циклических и каркасных аминов такой проблемы не существует и они в сравнении с открыто-цепными аминами, как привило боле сильные основания. анилины меньшими основными свойствами, чем алифатические амины. это связано с частичным сопряжением неподеленной пары электронов азота с ароматическим кольцом, что приводит к уменьшению способности этой пары взаимодействовать с вакантной орбиталью кислоты. донорные заместители в ароматическом ядре повышают основность анилинов, а акцепторные понижают. при наличии нескольких акцепторных групп в ароматическом кольце основные свойства и, например, 2,4-динитроанилин (pka=–4,4) проявляет основные свойства только в среде концентрированной серной кислоты.
алкилирование аминов.
алкилирование аминов, как и получение аминов из аммиака и галоидных алкилов имеет ограниченное применение. в основном она используется для получения несимметричных четвертичных аммонийных солей. последние, действием гидроксида серебра количественно переводятся в соответствующие четвертичные аммонийные основания.
ацилирование аминов.
первичные и вторичные амины, аналогично аммиаку, реагируют со сложными эфирами, и кислот с образованием n-замещенных амидов.
третичные алифатические амины не вступают в реакцию с производными карбоновых кислот.
взаимодействие аминов с и кетонами.
аммиак и первичные амины реагируют с и кетонами с образованием иминов (оснований шиффа).
вторичные амины в аналогичных условиях енамины.
обе эти реакции протекают по механизму присоединения по карбонильной группе. третичные амины не вступают в реакции с и кетонами.
взаимодействие алифатических и ароматических аминов с азотистой кислотой. соли диазония.
в зависимости от количества заместителей, алифатические амины в реакциях с азотистой кислотой могут образовывать крайне нестойкие соли диазония – первичные амины, n-нитрозоамины – вторичные амины или n-нитрозоаммонийные соли – третичные амины. по большей части эти реакции носят аналитический характер, так как позволяют с простой качественной реакции различить первичные, вторичные и третичные амины.
первичные ароматические амины (анилины) легко реагируют с азотистой кислотой с образованием достаточно стабильных в растворах (около 0˚с) солей диазония. как правило, акцепторные заместители в ароматическом ядре способствуют стабилизации солей диазония. так, п-нитрофенилдиазоний устойчив в растворе уже при комнатной температуре.
с реакций замещения из ароматических аминов, через образование солей диазония, получаются все арилгалогениды нитрилы и нитроароматические соединения. насколько особняком стоит реакция замены группы n≡n+ на f. в этой реакции (реакция шиммана) источником фтора в данной реакции является комплексный анион bf4- или pf6-. термическое разложение соли диазония с соответствующим противоионом приводит к замене диазо-группы на фтор. с гипофосфита натрия или этилового спирта многие соли диазония восстанавливаются до ароматических углеводородов (реакция деаминирования).
соли диазония, являясь электрофильными частицами, способны вступать в реакцию электрофильного замещения с некоторыми активными ароматическими субстратами – фенолами и анилинами. эта реакция называется – азосочетание, а ее продукты азо-соедигнения.
1) Моль. Можно найти масса делить на молярную массу) 2) V/Vm ( Объем делить на молярный объем).
2)Молярная масса находится по формуле: M = n*Ar, где M - молярная масса, n - количество атомов, Ar - относительная атомная масса.
3)Экзотермические и эндотермические реакции.
Экзотермические - с выделением теплоты, эндотермические - с поглощением теплоты.
4)Реакция соединения, разложение, обмена, замещения.
5)W = m/Mr, где W - массовая доля, m - масса вещества, Mr - молярная масса
6)D(вещ-ва) = M/M(г)
D(H2) = M/M = M(вещ-ва)/2
D(O2) = M/32
D(воздуха) = M/29
D - относительная плотность данного газа. M(H2) - молярная масса H2 = 2.
7)1) Взаимодействует с металлами
2)С неметаллами
3)Со сложными веществами
8) Солеобразующе: Основные ( металлы СО = 1 или 2. искл.: BeO, ZnO, SnO, PbO, GeO. Пример: Na2O, K2O
Амфотерные: металлы СО = 3 или 4 Пример: BeO
Кислотные металлы с СО ≥5 или неметаллы Пример: CO2, SiO2.
Несолеобразующие (не активные): CO, SiO, N2O, NO.
9) Основания: растворимые и нерастворимые. Гидрогсиды основных оксидов: LiOH, NaOH, KOH, RbOH, Mg(OH)2, Ca(OH)2, Ba(OH)2 и др.
10)Кислоты: бескислородные ( HCl, HBr, ) кислородосодержащие (H2SO4, HNO3)),
11) Соли: Комплексные, средние, кислые, основные, двойные, смешанные
12)Основные:
1) С кислотными оксидами
С водой
С кислотами
Кислотные:
С основными оксидами
с расторимыми основаниями
с солями
13)1)С индикаторами
2)С металлами (до водорода)
3) с основаниями и амфотерными гидроксидами
4)с основными и амфотерными оксидами
14) Получение:1. Реакция металла с водой.
2)Реакции с водой основных оксидов
3)Электролиз водных растворов хлоридов металлов – промышленное получение щелочей.
Свойства:
С индикаторами
С кислотами
С оксидами неметаллов
С солями
15) Свойства:
1)С кислотами
2)Распадаются при нагревании
Получение:
Взаимодействием соли с щелочью
CuSO4 + 2NaOH = Cu(OH)2 + Na2SO4
16)Соли:
1)С индикаторами
2)Разложение при нагревании
3)С кислотами
4)Со щелочами (осадок)
5)С другими солями (если образуется осадок)
6)С металлами (если металл более активен чем тот, который в соли)
Например:
CuSo4 + Na = Na2SO4 + Cu
Na2SO4 + Cu ≠
7)С кислотными оксидами
17) Na - металл, находится в 1 главной подгруппе 3 периоде ПСХЭ. Порядковый номер = 11, M = 23, число e = 11 число p = 11 Электронная формула: 1s2 2s2 2p6 3s1
18)N - неметалл, находится в 5 главной подгруппе 2 периода ПСХЭ. Порядковый номер = 7 Mr = 14, Число e = 7 Число p = 7. Электронная формула: 1s2 2s2 2p3
C2H5Br + KOH(водн.) = C2H5OH + KBr
C2H5OH + CuO = CH3COH + Cu + H2O
CH3COH + 2Cu(OH)2 = CH3COOH + Cu2O + 2H2O