Органические вещества широко применяются в аналитической химии вообще и в фармацевтическом анализе, в частности. Ещё с начала нашей эры было известно, что настой чернильных дубильных орешков можно было применять в качестве пробы на железо. Много столетий спустя (1815 год) было установлено, что крахмал в присутствии йода окрашивается в синий цвет. Первым синтетическим специфическим органическим реагентом для химического анализа считается реактив Грисса-Илошвая (предложен П. Гриссом в 1879 году и подробно изучен Л. Илошваем в 1889 году) – смесь α-нафтиламина и сульфаниловой кислоты, которая даёт красную окраску с нитрит-ионами. В 1885 году М.А. Ильский и Г. Кнорре предложили α-нитрозо-β-нафтол в качестве реагента для открытия и определения кобальта. Эта реакция оказалась примерно в 120 раз чувствительнее применявшейся ранее аналитической реакции катионов кобальта с нитритом калия. В 1905 году Л.А. Чугаев в работе «О новом чувствительном реагенте на никель» предложил диметилглиоксим в качестве реагента на никель и затем в своей докторской диссертации (1906) изложил результаты исследований в рассматриваемой области. Предложенный Чугаевым диметилглиоксим и поныне является непревзойдённым аналитическим реагентом на никель.
В настоящее время известно очень большое число синтетических органических реагентов, применяемых в химическом анализе, благодаря трудам И.П. Алимарина, А.К. Бабко, Р. Берга, В.А. Назаренко и других исследователей.
2. РЕАКЦИИ, ОСНОВАННЫЕ НА ОБРАЗОВАНИИ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ МЕТАЛЛОВ
При таких аналитических реакциях преимущественно (хотя и не всегда) применяются циклообразующие лиганды к построению хелатных комплексов, особенно – внутрикомплексных соединений и комплексонатов металлов. Молекулы подобных лигандов должны содержать функционально-аналитические группы (ФАГ образовывать с атомами металлов-комплексообразователей относительно прочные координационные связи, чаще всего – устойчивые металлоциклы. В состав ФАГ могут входить группы ОН, SH, NH, C=O, C=S, гетероатомы азота и др.
В химическом анализе используют комплексные соединения практически всех типов – катионного, анионного, комплексы-неэлектролиты, комплексы с неорганическими и органическими лигандами, моноядерные, многоядерные и т. д. Кратко охарактеризуем наиболее часто используемые в химическом анализе комплексных соединений.
2.1 Внутрикомплексные соединения
Внутрикомплексные соединения (ВКС) – координационные соединения металлов с одинаковыми или различными бидентатными (обычно-органическими) ацидолигандами, связанными с одним и тем же атомом металла комплексообразователя через одну отрицательно заряженную и одну нейтральную донорные группы с образованием одинаковых или различных внутренних металлоциклов (хелатных циклов), не содержащие внешнесферных ионов и являющиеся комплексами-неэлектролитами. Примером ВКС могут служить глицинат меди (II) и оксихинолинат цинка:
К ВКС относятся также такие практически важные соединения, как оксихинолинаты металлов состава MLn (L – депротонированный по венольной группе остаток 8-оксихинолина, n – степень окисления металла М), комплексы металлов с оксиоксимами, нитрозогидроксиламинами, нитрозофенолами, различными аминокислотами и др.
МЕДЬ : Температура плавления °C 1084 Температура кипения °C 2560 Плотность, γ при 20°C, кг/м³ 8890 Удельная теплоемкость при постоянном давлении, Ср при 20°C, кДж/(кг•Дж) 385 Температурный коэфициент линейного разширения, а•106 от 20 до 100°C, К-1 16,8 Удельное электрическое сопротивление, при 20°C 0,01724 Теплопроводность λ при 20°C, Вт/(м•К) 390 Удельная электрическая проводимость, ω при 20°C, МОм/м 58 Еще одним свойством воды является то, что она обладает высокой теплоемкостью (4,1868 кДж/кг) , это объясняет, почему в ночное время и при переходе от лета к зиме вода остывает медленно, а днем или во время перехода от зимы к лету также медленно нагревается. Благодаря этому свойству вода является регулятором температуры на Земле.
Вода обладает большой удельной теплоемкостью и является хорошим теплоносителем. Среди всех жидкостей вода имеет самое высокое поверхностное натяжение. вода стать хорошим проводником при условии растворения в ней даже малого количества ионных веществ.
По массе в состав воды входит 88,81% кислорода и 11,19% водорода, вода кипит при температуре +100°С, а замерзает при 0°С, она плохой проводник для электричества и теплоты, но хороший растворитель. (Для информации) .
Физические свойства Н2О Температура кипения (°С) -100 Температура кристаллизации (°С) - 0 Плотность при 20°С (г/см3) -0,9982 Молекулярная масса -18 При переходе воды из твердого состояния в жидкое ее плотность не уменьшается, а возрастает, также плотность воды увеличивается при ее нагреве от 0 до +4°С, максимальную плотность вода имеет при +4°С, и только при последующем ее нагревании плотность уменьшается.
При +4°С градусах плотность воды превышает плотность льда, благодаря чему охлаждаясь сверху вода опускается на дно лишь до тех пор, пока ее температура не достигнет +4°С, вследствие чего лед остается на поверхности водоемов, что делает возможным жизнь под слоем льда водной флоры и фауны.
Данные свойства воды связаны с существующими в ней водородными связями, связывающими между собой молекулы, как в жидком, так и в твердом состоянии