Восновании четырёхугольной пирамиды лежит квадрат со стороной 2. одно из боковых рёбер равно 3 и перпендикулярно к основанию. найдите радиус сферы описанной около пирамиды.
найти общее решение линейного однородного дифференциального уравнения: 2y'''-7y''=0
Решение -------------------------------------------------------------------------------------------------- Линейным однородным дифференциальным уравнением высшего (3-го) порядка с постоянными коэффициентами называется уравнение вида y⁽³⁾ + a₁y⁽²⁾ + a₂y' + a₃ = 0 где коэффициенты a₁, a₂, a₃ – заданные действительные числа.
Общим решением линейного однородного дифференциального уравнения 3 порядка с постоянными коэффициентами является линейная комбинация y(x) = C₁y₁(x) + C₂y₂(x) + C₃y₃(x)
–линейно независимых на том же отрезке частных решений этого уравнения y₁(x), y₂(x), y₃(x)
Для их нахождения составляется и решается характеристическое уравнение k³ + a₁k² + a₂k + a₃ = 0 Получаемое заменой в исходном дифференциальном уравнении производных y⁽ⁿ⁾ искомой функции степенями kⁿ , причем сама функция заменяется единицей y⁽⁰⁾ =1. Характеристическое уравнение – это алгебраическое уравнение степени n.
Каждому из n корней характеристического уравнения соответствует одно из n линейно независимых частных решений линейного однородного дифференциального уравнения, причем:
– каждому действительному простому корню b соответствует частное решение вида
eᵇˣ -каждому действительному корню k кратности a соответствуют частных решений вида eᵇˣ, xeᵇˣ, x²eᵇˣ, x³eᵇˣ, xᵃ⁻¹eᵇˣ --------------------------------------------------------------------------------------------------
Как видно, характеристическое уравнение имеет один корень второго порядка: k₁₂ = 0 и один простой корень k₃ = 3,5. Частные решение дифференциального уравнения определяются формулами
Поэтому, общее решение однородного уравнения имеет вид
найти общее решение линейного однородного дифференциального уравнения: 2y'''-7y''=0
Решение -------------------------------------------------------------------------------------------------- Линейным однородным дифференциальным уравнением высшего (3-го) порядка с постоянными коэффициентами называется уравнение вида y⁽³⁾ + a₁y⁽²⁾ + a₂y' + a₃ = 0 где коэффициенты a₁, a₂, a₃ – заданные действительные числа.
Общим решением линейного однородного дифференциального уравнения 3 порядка с постоянными коэффициентами является линейная комбинация y(x) = C₁y₁(x) + C₂y₂(x) + C₃y₃(x)
–линейно независимых на том же отрезке частных решений этого уравнения y₁(x), y₂(x), y₃(x)
Для их нахождения составляется и решается характеристическое уравнение k³ + a₁k² + a₂k + a₃ = 0 Получаемое заменой в исходном дифференциальном уравнении производных y⁽ⁿ⁾ искомой функции степенями kⁿ , причем сама функция заменяется единицей y⁽⁰⁾ =1. Характеристическое уравнение – это алгебраическое уравнение степени n.
Каждому из n корней характеристического уравнения соответствует одно из n линейно независимых частных решений линейного однородного дифференциального уравнения, причем:
– каждому действительному простому корню b соответствует частное решение вида
eᵇˣ -каждому действительному корню k кратности a соответствуют частных решений вида eᵇˣ, xeᵇˣ, x²eᵇˣ, x³eᵇˣ, xᵃ⁻¹eᵇˣ --------------------------------------------------------------------------------------------------
Как видно, характеристическое уравнение имеет один корень второго порядка: k₁₂ = 0 и один простой корень k₃ = 3,5. Частные решение дифференциального уравнения определяются формулами
Поэтому, общее решение однородного уравнения имеет вид
Решение. Пусть Н — основание высоты пирамиды (рисунок 2). Тогда точка
Н совпадает с центром основания ABCD, a поэтому НА=НВ=НС=HD=
1 AC 2 Тем самым точка Н совпадает с центром окружности,
описанной около основания ABCD. Рассмотрим плоскость AS С и
найдем на высоте SH точку О такую, что OS=ОА (рисунок 3). Так как
SH AC , AH 2 , и AS=3, то SH 32 (
2)2 7 . Обозначим
SO=R. Тогда OH 7 R и
AO2 AH 2 OH 2 2 (
7 R)2 9 2
7R R2 . Из условия АО=R
составляем уравнение: 9 2
7R R2 R2 . Отсюда R
Рассматривая треугольники АНО, ВНО, СНО, DHO, получаем, что они
прямоугольные и равны, так как имеют соответственно равные катеты.
Отсюда АО=ВО=СО=DO=SO. Поэтому сфера с центром О и радиусом
9
7 .содержит все вершины пирамиды.
14
ответ: R
9
7 .
14