y=e⁻²ˣ+e²ˣ-2·x³-3·x
Пошаговое объяснение:
Дано линейное уравнение и начальные условия:
y''-4·y=8·x³, y(0)=2, y'(0)=-3
1) Сначала решаем линейное однородное уравнение
y''-4·y=0
Для этого составим и решим характеристическое уравнение:
λ²-4=0 ⇔ (λ+2)(λ-2)=0 ⇔ λ₁ = -2, λ₂ = 2
Получены два различных действительных корня, поэтому общее решение однородного уравнения:
y=C₁·e⁻²ˣ+C₂·e²ˣ
2) Теперь найдём частное решение y₁ неоднородного уравнения
y''-4·y=8·x³
Так как правая часть уравнения многочлен 8·x³, то будем искать в виде
y₁=A·x³+B·x²+C·x+D
Найдём первую и вторую производную:
y₁'=(A·x³+B·x²+C·x+D)=3·A·x²+2·B·x+C
y₁''=(3·A·x²+2·B·x+C)'=6·A·x+2·B
Подставим y₁ и y₁'' в левую часть неоднородного уравнения:
6·A·x+2·B-4·(A·x³+B·x²+C·x+D)=8·x³
Раскрываем скобки и упростим:
-4·A·x³-4·B·x²+(6·A-4·C)·x+2·B-4·D=8·x³
Приравниваем коэффициенты при соответствующих степенях и составим систему линейных уравнений и решаем:
-4·A=8 ⇒ A = -2
-4·B=0 ⇒ B = 0
6·A-4·C=0 ⇒ 4·C = 6·A ⇒ 4·C = 6·(-2) ⇒ 4·C = -12 ⇒ C = -3
2·B-4·D=0 ⇒ 4·D=2·B ⇒ 4·D=2·0 ⇒ D = 0
Получили частное решение
y₁= -2·x³-3·x
3) Тогда получим следующее общее решение
y=C₁·e⁻²ˣ+C₂·e²ˣ-2·x³-3·x
4) Применим начальные условия:
y(0)=C₁·e⁰+C₂·e⁰-2·0³-3·0=2 ⇒ C₁+C₂=2
y'=(C₁·e⁻²ˣ+C₂·e²ˣ-2·x³-3·x)'= -2·C₁·e⁻²ˣ+2·C₁·e²ˣ - 6·x²-3
y'(0)= -2·C₁·e⁰+2·C₂·e⁰ - 6·0²-3 = -3 ⇒ -2·C₁+2·C₂ - 3=-3 ⇒ C₁ -C₂ =0 ⇒ C₁=C₂
Получили систему линейных уравнений и решаем:
C₁ = C₂ =1
C₁ + C₂ =2 ⇒ C₂ + C₂ =2 ⇒ 2· C₂ =2 ⇒ C₂ =1
5) Подставляя C₁ и C₂ в общее решение получим
y=e⁻²ˣ+e²ˣ-2·x³-3·x
1 7/9 + (6 3/4 : 3,125 - 2,5 : 3 1/8) · 7,5 - 2 2/15 = 9 целых 38/45
1) 6 3/4 : 3,125 = 6,75 : 3,125 = 2,16
2) 2,5 : 3 1/8 = 25/10 : 25/8 = 25/10 · 8/25 = 8/10 = 0,8
3) 2,16 - 0,8 = 1,36
4) 1,36 · 7,5 = 10,2 = 10 2/10 = 10 1/5
5) 1 7/9 + 10 1/5 = 1 35/45 + 10 9/45 = 11 44/45
6) 11 44/45 - 2 2/15 = 11 44/45 - 2 6/45 = 9 38/45
Можно преобразовать выражение в скобках (3 действия в одном)
3 1/8 = 3 целых 125/1000 = 3,125
= (6,75 - 2,5) : 3,125 = 4,25 : 3,125 = 1,36