7/16
Пошаговое объяснение:
Обозначим моменты встречи 2х студентов соответственно через х и у. Они могут встретиться в течение часа(так как 13-12=1). Пусть Т=1. В силу условия задачи должны выполняться двойные неравенства: 0<х<1, 0<y<1.
Введем в рассмотрение прямоугольную систему координат хОу. В этой системе двойным неравенствам удовлетворяют координаты любой точки, принадлежащей квадрату ОТ AT. Таким образом, этот квадрат можно рассматривать как фигуру G, координаты точек которой представляют все возможные значения моментов встречи студентов. Так как пришедший первым ждет второго в течение 1/4 часа, после чего уходит, то t=1/4.
Они встретятся, если разность между моментами меньше t, т. е. если у—х < t при у > х и x — y<t, x>y, или, что то же,
У < x+t при у > х, (*)
У>х—t при у < х, (**)
Неравенство (*) выполняется для координат тех точек фигуры G, которые лежат выше прямой у= х и ниже прямой y = x+t; неравенство (**) имеет место для точек, расположенных ниже прямой y=x и выше прямой у = х—t.
Как видно из рис все точки, координаты которых удовлетворяют неравенствам (*) и (**) принадлежат заштрихованному шестиугольнику. Таким образом, этот шестиугольник можно рассматривать как фигуру g. координаты точек которой являются благоприятствующими моментами времени х и у, когда студенты помут встретиться.
№599
0,07+0,11=0,18
70+0,0481=70,0481
5+0,017=5,017
11+0,017+0,017=11,034
№601
9 мм = 0,9 см = 9/10
29 мм = 2,9 см = 2 9/10
31 мм = 3,1 см = 3 1/10
256 мм = 25,6 см = 25 6/10
491 мм = 49,1 см = 49 1/10
12 см 3 мм = 12,3 см = 12 3/10
8 см 5 мм = 8,5 см = 8 5/10
3 ц 24 кг = 3,24 ц = 3 24/100
11 ц 8 кг = 11,08 ц = 11 8/100
5 ц 24 кг = 5,24 ц = 5 24/100
632 кг = 6,32 ц = 6 32/100
3750 кг = 37,50 ц = 37 50/100
41141 кг = 411,41 ц = 411 41/100
Пошаговое объяснение:
если нужно некоторые можно дальше сокращать, например, 25 6/10 = 25 3/5. Но в этой теме не сокращали
А значит исходное число оканчивается цифрой 2
______________________________
Использованы свойства сравнения чисел по модулю