На каждой клетке доски размером 9×9 сидит жук, По свистку каждый из жуков переползает в одну из соседних по диагонали клеток. При этом в некоторых клетках может оказаться больше одного жука, а некоторые клетки окажутся незанятыми.
Докажите, что при этом незанятых клеток будет не меньше 9.На клетчатой бумаге даны произвольные n клеток. Докажите, что из них можно выбрать не менее n/4 клеток, не имеющих общих точекПлоскость раскрашена в три цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:
а) левом верхнем,
б) правом верхнем?
Памойму правильно если не правильно зделайте отметить нарушения.
Аня, ты ведь Аня? включай головку. Если они оба сели на велосипеды в 9 и слезли в 11, то сколько они сидели в сёдлах? А если б их было 4 или 500 Я на всякий случай напишу - 2часа. 11часов-9 часов = 2.Не зависимо от того, сколько их было. и с какой скоростью они ехали. и со второй задачей то же самое. 40 минут они ехали.Не важно - на велосипеде, самокате, ковре-самолёте, встретились и остановились поговорить, или проехали друг мимо друга, или один из них спутал дорогу и наездил 3 круга - важно, что они остановились через 40 минут оба. одновременно. Значит оба ездили 40 мин
На каждой клетке доски размером 9×9 сидит жук, По свистку каждый из жуков переползает в одну из соседних по диагонали клеток. При этом в некоторых клетках может оказаться больше одного жука, а некоторые клетки окажутся незанятыми.
Докажите, что при этом незанятых клеток будет не меньше 9.На клетчатой бумаге даны произвольные n клеток. Докажите, что из них можно выбрать не менее n/4 клеток, не имеющих общих точекПлоскость раскрашена в три цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:
а) левом верхнем,
б) правом верхнем?
Памойму правильно если не правильно зделайте отметить нарушения.