Пошаговое объяснение:
Функция представляет собой кубический многочлен. Точек разрыва нет, значит функция непрерывна на отрезке
[
0
;
2
]
.
Находим производную:
y
′
=
(
2
x
3
−
3
x
2
−
4
)
′
=
6
x
2
−
6
x
Приравниваем производную к нулю. Решаем уравнение и получаем критические точки:
6
x
2
−
6
x
=
0
6
x
(
x
−
1
)
=
0
x
1
=
0
,
x
2
=
1
Проверяем принадлежность полученных точек отрезку
[
0
;
2
]
:
x
1
∈
[
0
;
2
]
,
x
2
∈
[
0
;
2
]
Так как обе точки принадлежат отрезку, то вычисляем в них значение функции
f
(
x
)
, так же значение этой функции на концах интервала
[
0
;
2
]
:
y
(
x
1
)
=
y
(
a
)
=
f
(
0
)
=
2
⋅
0
3
−
3
⋅
0
2
−
4
=
−
4
y
(
x
2
)
=
y
(
1
)
=
2
⋅
1
3
−
3
⋅
1
2
−
4
=
−
5
y
(
b
)
=
y
(
2
)
=
2
⋅
2
3
−
3
⋅
2
2
−
4
=
0
Среди полученных значений наибольшее
M
=
0
, наименьшее
m
=
−
5
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это своевременно получить зачёт у преподавателя!
Якщо А брех. то він сказав, що він є лиц.
Якщо А лиц. то він сказав, що він є лиц.
Отже, в будь-якому випадку А сказав, що він є лиц.
Отже, В сказав неправду і В є брехуном,
а С сказав правду і С є лицарем.