Уравнения перепишем: 3х² + 4у = 0 ⇒ 4у = -3х² ⇒ у = -3/4 х² - на графике это парабола 2х - 4у -1 = 0 ⇒ 4у = 2х -1 ⇒ у = 2/4 х - 1/4 - на графике это прямая. Найдём границы интегрирования -3/4 х² = 1/2 х - 1/4 |·4 -3х² = 2х - 1 3х³ + 2х -1 = 0 Ищем корни по чётному коэффициенту: х1 = -1 и х2 = 1/3 Тепер надо найти 2 интеграла и выполнить вычитание а) Интеграл, под интегралом -3/4 х²dx в пределах от -1 до 1/3 = = -3х³/12 = -х³/4| в пределах от -1 до 1/3 = - 1/108 -1/4 = 28/108 = -14/54 = -7/27 б) интеграл, под интегралом (1/2х -1/4)dx в пределах от -1 до 1/4 = = 1/2 х²/2 - 1/4 х| в пределах от -1 до 1/3 = -5/6 S = -7|27 - ( -7|27) = -31/54 ответ: 31/54 (берём без минуса, т.к. минус показывает, что фигура лежит в отрицательной части)
Уравнения перепишем: 3х² + 4у = 0 ⇒ 4у = -3х² ⇒ у = -3/4 х² - на графике это парабола 2х - 4у -1 = 0 ⇒ 4у = 2х -1 ⇒ у = 2/4 х - 1/4 - на графике это прямая. Найдём границы интегрирования -3/4 х² = 1/2 х - 1/4 |·4 -3х² = 2х - 1 3х³ + 2х -1 = 0 Ищем корни по чётному коэффициенту: х1 = -1 и х2 = 1/3 Тепер надо найти 2 интеграла и выполнить вычитание а) Интеграл, под интегралом -3/4 х²dx в пределах от -1 до 1/3 = = -3х³/12 = -х³/4| в пределах от -1 до 1/3 = - 1/108 -1/4 = 28/108 = -14/54 = -7/27 б) интеграл, под интегралом (1/2х -1/4)dx в пределах от -1 до 1/4 = = 1/2 х²/2 - 1/4 х| в пределах от -1 до 1/3 = -5/6 S = -7|27 - ( -7|27) = -31/54 ответ: 31/54 (берём без минуса, т.к. минус показывает, что фигура лежит в отрицательной части)
вы изучали сложные функции?
F(G(x)) - ?
f(g(x)) = (2x² + 2x - 4)/(3x + 3)
В вашем случае f(g(x)) = (2g(x)² + 3g(x) - 4)/(3g(x) + 3)
g(x) = 2x² + 3x + 5
Проще говоря вместо переменной x надо подставить 2x² + 2x + 5
f(2x² + 3x + 5) = (2(2x² + 3x + 5)² + 3(2x² + 3x + 5) - 4)/(3(2x² + 3x + 5) + 3) = (2((2x²)² + 2*2x²*(3x + 5) + (3x+5)²) + 6x² + 9x + 15 - 4)/((6x² + 9x + 15) + 3) = ( 2(4x⁴ + 12x³ + 20x² + 9x² + 30x + 25) + 6x² + 9x + 11)/(6x² +9x + 18) =
= (8x⁴ + 24x³ + 58x² + 60x + 50 + 6x² + 9x + 11)/(6x² + 9x + 18) =
= (8x⁴ + 24x³ + 64x² + 69x + 61)/(6x² + 9x + 18)
очень похоже на Ваш ответ