М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Найти dy/dx для функции x^3+y^3=5xy

👇
Ответ:
Kuznezovamargo
Kuznezovamargo
17.09.2021
Чтобы найти производную функции, данной в уравнении, мы будем использовать правило дифференцирования для функций, где переменные смешаны.

Шаг 1: Начнем с уравнения x^3 + y^3 = 5xy.

Шаг 2: Дифференцируем обе части уравнения по переменной x:

(d/dx) (x^3 + y^3) = (d/dx) (5xy).

На левой стороне у нас есть сумма двух функций. По правилу суммы для дифференцирования мы можем дифференцировать каждую функцию по отдельности:

(d/dx) (x^3) + (d/dx) (y^3) = (d/dx) (5xy).

Шаг 3: Дифференцируем каждое слагаемое по отдельности:

3x^2 + 3y^2 * (dy/dx) = 5y + 5x * (dy/dx).

Здесь мы использовали правило дифференцирования для степенных функций (d/dx) (x^n) = n * x^(n-1) и правило дифференцирования произведения функций (d/dx) (xy) = y + x * (dy/dx).

Шаг 4: Теперь нам нужно выразить dy/dx, чтобы найти его значение. Для этого мы можем перенести все слагаемые, содержащие dy/dx, на одну сторону уравнения, а все другие слагаемые - на другую:

3y^2 * (dy/dx) - 5x * (dy/dx) = 5y - 3x^2.

Шаг 5: Факторизуем dy/dx и выразим его:

(dy/dx) * (3y^2 - 5x) = 5y - 3x^2.

(dy/dx) = (5y - 3x^2) / (3y^2 - 5x).

Это выражение представляет собой производную функции x^3 + y^3 = 5xy по переменной x. Мы конечно же можем упростить это выражение до более простой формы, но оно полностью отражает процесс дифференцирования и является ответом на вопрос.
4,4(17 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ