Половину пути принимаем за 1, тогда весь путь - 2. Пусть скорость первого автомобилиста равна х км/ч, тогда скорость второго на второй половине пути равна (х+9) км/ч. Первый был в пути 2/х часов, второй - 1/30 + 1/(х+9) часов. Зная, что их время одинаковое, составляем уравнение. 2/х = 1/30 + 1/ (х+9)
Приводим к общему знаменателю и приравниваем числители. 60(х+9) = х²+9х+30х х²+39х-60х-540=0 х²-21х-540=0 D=441+2106=2601 √D=51 х₁=(21-51)/2=-15 - не подходит по условию задачи х₂=(21+51)/2 = 36
Правильная четырехугольная пирамида .
(см²).
(см).
Найти:- сторону основания.
Решение:Площадь боковой поверхности правильной четырехугольной пирамиды можно вычислить по следующей формуле:
, где - сторона основания и - апофема (высота боковой грани, проведенная из вершины).
Попробуем выразить через (сторону основания) и (см) (высоту пирамиды).
Рассмотрим прямоугольный (где - середина ). В нем (см), а (см) (как половина стороны квадрата, равной см).
По теореме Пифагора:
Все это подставляем в уравнение площади боковой поверхности (при возведении в квадрат держим в голове, что - неотрицательное):
Пусть :
Второй корень нам не подходит по причине отрицательности. Значит:
Задача решена!
ответ: или около (см).