М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Егор02121
Егор02121
23.11.2020 22:36 •  Математика

Из 5000 вкладчиков банка по схеме случайной бесповторной выборки было отобрано 300 вкладчиков. средний размер вклада в выборке составил 8000 руб., а среднее квадратическое отклонение 2500 руб. какова вероятность того, что средний размер вклада случайно выбранного вкладчика отличается от его среднего размера в выборке не более, чем на 100 руб. (по абсолютной величине)?
желательно с объяснением

👇
Ответ:
munisa333
munisa333
23.11.2020
Добрый день!

Чтобы решить данную задачу, нам поможет центральная предельная теорема. Она утверждает, что если мы выбираем достаточно большую случайную выборку из какой-либо генеральной совокупности, то распределение выборочного среднего будет приближаться к нормальному распределению с теми же параметрами, что и сама генеральная совокупность.

В нашем случае у нас есть выборка из 300 вкладчиков из общего числа вкладчиков банка, равного 5000. Мы знаем, что средний размер вклада в выборке составляет 8000 рублей, а среднее квадратическое отклонение равно 2500 рублей.

Так как объем выборки больше 30 (300 > 30), мы можем применить центральную предельную теорему и использовать нормальное распределение для рассчета вероятности.

Средний размер вклада случайно выбранного вкладчика (не из выборки) будет иметь такое же среднее, как и в выборке, а его стандартное отклонение будет равно:

Стандартное отклонение вклада в генеральной совокупности = Стандартное отклонение вклада в выборке / √объема выборки

Тогда стандартное отклонение вклада в генеральной совокупности равно:

Стандартное отклонение вклада в генеральной совокупности = 2500 / √300 ≈ 144.34 руб.

Так как у нас нет информации о форме распределения вклада в генеральной совокупности и прибегнуть к точным значениям не можем, мы будем использовать нормальное распределение для рассчета вероятности.

Теперь обратимся к самому вопросу: какова вероятность того, что средний размер вклада случайно выбранного вкладчика отличается от среднего размера в выборке не более, чем на 100 рублей (по абсолютной величине)?

Мы можем сформулировать это так: какова вероятность того, что разница между средним размером вклада в выборке и средним размером вклада в генеральной совокупности будет не более, чем 100 рублей (по абсолютной величине).

Для этого нам нужно найти z-оценку для разницы средних:

z = (разница средних - 0) / стандартное отклонение разницы

Так как у нас нет информации о стандартном отклонении разницы, мы его можем оценить, используя стандартное отклонение вклада в генеральной совокупности и объем выборки:

Стандартное отклонение разницы = стандартное отклонение вклада в генеральной совокупности / √объема выборки

Стандартное отклонение разницы = 144.34 / √300 ≈ 8.338 руб.

Теперь мы можем рассчитать z-оценку:

z = (100 - 0) / 8.338 ≈ 11.99

Затем мы находим вероятность для полученной z-оценки, использовав таблицу нормального распределения или калькулятор вероятности.

Вероятность превышения значения z-оценки составляет практически 0. Но нам интересует не это, а вероятность, что разница между средним размером вклада в выборке и средним размером вклада в генеральной совокупности не будет превышать 100 рублей.

Мы можем использовать таблицу нормального распределения, чтобы найти площадь под кривой слева от найденной z-оценки (11.99).

В таблице обычно перечислены вероятности до 3.5 стандартных отклонений, так что мы можем принять, что вероятность будет очень близкой к 1.

Таким образом, вероятность того, что средний размер вклада случайно выбранного вкладчика отличается от его среднего размера в выборке не более, чем на 100 рублей (по абсолютной величине), практически равна 1.

Надеюсь, это пояснение помогло тебе понять, как решить эту задачу. Если у тебя возникают еще вопросы, пожалуйста, задавай их!
4,8(36 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ