Два студента экзамен. вероятность того, что первый студент сдаст экзамен = 0,5 , второй = 0,6. какова вероятность того, что хотя бы один студент сдаст экзамен?
Докажем утверждение индукцией по числу n учеников в классе. Для n = 3 утверждение очевидно. Предположим, что оно верно при n ≤ N. Пусть n = N + 1. Утверждение верно, если в классе ровно один молчун. Пусть их не менее двух. Выделим молчуна A и его друзей — болтунов B1, … ,Bk. Для оставшихся n – 1 – k учеников утверждение верно, т.е. можно выделить группу M, в которой каждый болтун дружит с нечётным числом молчунов и в M входит не менее учеников. Предположим, что болтуны B1, … ,Bm дружат с нечётным числом молчунов из M, а Bm + 1, … ,Bk — с чётным числом. Тогда, если , то добавим к группе M болтунов B1, … ,Bm, а если , то добавим к группе M болтунов Bm + 1, … ,Bk и молчуна A. В обоих случаях мы получим группу учеников, удовлетворяющую условию задачи.
Докажем утверждение индукцией по числу n учеников в классе. Для n = 3 утверждение очевидно. Предположим, что оно верно при n ≤ N. Пусть n = N + 1. Утверждение верно, если в классе ровно один молчун. Пусть их не менее двух. Выделим молчуна A и его друзей — болтунов B1, … ,Bk. Для оставшихся n – 1 – k учеников утверждение верно, т.е. можно выделить группу M, в которой каждый болтун дружит с нечётным числом молчунов и в M входит не менее учеников. Предположим, что болтуны B1, … ,Bm дружат с нечётным числом молчунов из M, а Bm + 1, … ,Bk — с чётным числом. Тогда, если , то добавим к группе M болтунов B1, … ,Bm, а если , то добавим к группе M болтунов Bm + 1, … ,Bk и молчуна A. В обоих случаях мы получим группу учеников, удовлетворяющую условию задачи.
0.8
Пошаговое объяснение:
Пусть
- вероятность сдачи экзамена первым студентом,
- вторым.
Тогда вероятность несдачи первым и вторым соответственно равны
.
Вероятность несдачи одновременно обоими студентами равна
.
Значит, хотя бы один студент сдаст экзамен с вероятностью