М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
миша1128
миша1128
28.11.2022 23:19 •  Математика

Биз ауданы 4м2 болатын 12 бирдей шаршы атыздан тикбурышты бакша жасагымыз келеди

👇
Открыть все ответы
Ответ:
alina20021982
alina20021982
28.11.2022
Рассмотрим правильный тетраэдр SABC. Будем искать расстояние между ребрами AC и SB. Обозначим середину AC как D и середину SB как E.
Поскольку SD - высота в равнобедренном треугольнике ASC, BD - высота в равнобедренном треугольнике ABC, плоскость SDB перпендикулярна AC. Так как DE лежит в плоскости SBD, DE⊥AC.
Аналогично доказываем, что DE⊥SB. Поэтому DE и будет искомым расстоянием между прямыми AC и SB.
Рассмотрим равносторонний треугольник ABC. Пусть ребро тетраэдра равно a. CD=AC/2=a/2. Тогда BD=√(BC²-CD²)=√(a²-(a/2)²)=a√3/2.
Рассмотрим равнобедренный треугольник SDB. DE - высота треугольника SDB. BE=a/2. Тогда из прямоугольного треугольника DEB: DE=√(BD²-BE²)=√((a√3/2)²-(a/2)²)=a√2/2.
Подставим a=7см и получим: DE=7√2/2 см.
ответ: 7√2/2 см.
Тетраэдре с ребром 7 см расстояние между противоположительными ребрами
4,8(73 оценок)
Ответ:
SerenaWilliamsisa
SerenaWilliamsisa
28.11.2022
Для вычисления объема пирамиды нужно узнать ее площадь основания и высоту. Для вычислений понадобится полупериметр треугольника-основания p=(4+6+7)/2=17/2.
Площадь произвольного треугольника по трем сторонам равна S= \sqrt{p*(p-a)*(p-d)*(p-c)}= \sqrt{ \frac{17}{2}( \frac{17}{2}-4)( \frac{17}{2}-6)( \frac{17}{2}-7) }=\sqrt{ \frac{17}{2} \frac{17-8}{2} \frac{17-12}{2} \frac{17-14}{2} }= \sqrt{ \frac{17*9*5*3}{2*2*2*2} }= \frac{3}{4} \sqrt{17*5*3}
У пирамиды с равным углом всех ребер к основанию, высота, опущенная из вершины, попадает в центр описанной около основания окружности. Радиус такой окружности для произвольного треугольника равен R= \frac{abc}{4S}= \frac{4*6*7}{ 4*\frac{3}{4} \sqrt{17*5*3} }= \frac{56}{ \sqrt{17*5*3} }
Ее радиус и высота пирамиды- катеты прямоугольного треугольника, и высота равна h=R*tg \frac{ \pi }{3} = \frac{56}{ \sqrt{17*5*3}} * \sqrt{3}= \frac{56}{ \sqrt{17*5} }
Объем пирамиды V= \frac{1}{3} Sh= \frac{1}{3} \frac{3}{4} ( \sqrt{17*5*3})* \frac{56}{ \sqrt{17*5} } =14 \sqrt{3} кубических единиц.
4,6(25 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ