1) 5-х=2 все числа переносим в правую сторону, меня знак на противоположный, а Х оставляем в левой части. отсюда, -х=2-5. решаем правую часть, отсюда, -х=-3. чтобы избавиться от -Х мы переносим минус в правую часть, т.е. знак чисел в правой части меняем на противоположный. отсюда, х=3. 2) х+7=9 переносим числа в правую сторону, меняю знак. отсюда, х=9-7 решаем правую часть. х=2 3) 3-х=3 переносим числа в правую сторону, меняя знак на противоположный, Х оставляем в левой части. -х=3-3 решаем правую часть. отсюда, х=0 4) 6+х=6 переносим числа в правую сторону, меняя знак на противоположный, а Х оставляем в левой части. отсюда, х=6-6 решаем правую часть, отсюда. х=0
ПРОВЕРКА: вместо Х в уравнение подставляется число, полученное после решения. 1) 5-3=2 - верно. 2) 2+7=9 - верно 3) 3-0=3 - верно 4) 6+0=6 - верно.
1)Да. Четыри прямых, две из которых проходят через диагонали квадрата, а другие две через середины противоположных сторон. Ето легко показать если взять квадратный лист бумаги и сложить пополам и розложыть - тогда линия сгина и будет частю (сгин конечен, а прямая - нет) оси симетрии. А таких разных складываний есть 4. 2)Нет. Треугол. бывают с прямым углом - прямоуголные. есть такая теорема:сума углов треугольника равна 180 гр., а так как 90 менше 180, то на остальные 2 угла остается еще 90 гр. то есть существуют треугольники с углом 90гр. 3)Да. Пускай m:n=m*(1/n) операцию деления поменяем умножением. Уменшим делимое и повтори замену операций (m:2):n=(m*1/2)*1/n=. А теперь скобки можна опустить так как неважно в каком порядке перемножать - результат тот же. =m*1/n*1/2, а m*1/n есть частное которое умн. на 1/2 и будет в два раза менше. Например: 12:3=4. 12:2:3=2 4)Нет. Пускай сторона квадрата 2а, тогда его площа S=(2a)^2=4a^2. Уменшим сторону в двое- получим квадрат с стороной а и площей S1=a^2 и видим что его площа в 4 раза менше, а не в два.