о двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 90 км/ч и 30 км/ч. Длина товарного поезда равна 900 метрам. Найдите длину пассажирского поезда, если время, за которое он мимо товарного поезда, равно 1 минуте 9 секундам. ответ дайте в метрах.
По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 90 км/ч и 30 км/ч. Длина товарного поезда равна 600 метрам. Найдите длину пассажирского поезда, если время, за которое он мимо товарного поезда, равно 1 минуте. ответ дайте в метрах.
Скорость сближения поездов равна 60 км/ч или 1 км/мин. Следовательно, за 1 минуту пассажирский поезд сместится относительно товарного на 1 км. При этом он преодолеет расстояние, равное сумме длин поездов. Поэтому длина пассажирского поезда равна 1000 − 600 = 400 м.
Приведём другое решение.
Скорость сближения поездов равна
Пусть длина пассажирского поезда равна х метров. За 60 секунд один поезд проходит мимо другого, то есть преодолевает расстояние х + 600. Тогда:
Поэтому длина пассажирского поезда 400 м.
ответ: 400.
\sqrt{x}: Sqrt[x]
\sqrt[n]{x}: x^(1/n)
a^{x}: a^x
\log_{a}x: Log[a, x]
\ln x: Log[x]
\cos x: cos[x] или Cos[x]
\sin x: sin[x] или Sin[x]
\operatorname{tg}x: tan[x] или Tan[x]
\operatorname{ctg}x: cot[x] или Cot[x]
\sec x: sec[x] или Sec[x]
\operatorname{cosec} x: csc[x] или Csc[x]
\arccos x: ArcCos[x]
\arcsin x: ArcSin[x]
\operatorname{arctg} x: ArcTan[x]