Пошаговое объяснение:
Построить график функции без небольшого анализа самой функции практически невозможно. Это необходимо как минимум для того, чтобы проконтролировать правильность построения. Поэтому с небольшого анализа и начнем.
Первое, на что необходимо обратить внимание — это разновидность заданной функции. От этой разновидности будет зависеть и кривая графика.
В нашем случае заданная функция — линейная, поэтому ее графиком будет прямая линия. Такой короткий анализ уже намного упрощает задание.
О прямой линии известно, что ее можно построить с двух точек. Поэтому достаточно найти две точки графика и провести через них прямую.
Точка принадлежит графику, если выполняется условие, что:
\[y\ =\ 2x\ -\ 4\]
Найдем такие 2 точки, выбрав произвольные значения аргумента х. Например, возьмем 0 и 5.
При х = 0 значение функции будет:
\[y\left(0\right)\ =\ 2\cdot 0\ -4=-4\]
\[y\left(5\right)\ =\ 2\cdot 5\ -4=6\]
Есть две точки (0; -4) и (5; 6). Проведем через них прямую, которая будет графиком заданной в условии функции.
Можно было подставлять не произвольные значения переменной х, а найти точки пересечения функции с координатными осями. Оба варианта приведут к одному и тому же результату и являются равными по сложности расчетов.
Пошаговое объяснение:
1)
S=( (АВ+ДС)/2 )*СН = ( (20+10) /2)) *5=15*5=75.
2)
Катет,лежащий против угла в 30 град, равен половине гипотенузы.
h=АД/2=20/2=10.
S=( ( 3+7) /2))*10=5*10=50.
3)
S=(( СД+ВА)/2))*СВ=( (5 +15)/2))*7=10*7=70.