ответ: P = 24
Пошаговое объяснение:
Рассмотрим квадрат:
Sкв = a^2
a^2 = 16
a1 = 4
a2 = (-4) - не удовлетворяет условию
Рассмотрим прямоугольник:
a = 4 * 2 = 8 (по
b = 4 условию)
Pпрямоугольника = 2*(a + b) = 2*(8+4) = 2 * 12 = 24
Находим отношение ВР/СР;
Через вершину В проводится прямая II АС. АР продолжается за точку Р до пересечения с этой прямой в точке Е.
Итак, ВЕ II AC;
Треугольники ЕВК и АКМ подобны по равенству углов , поэтому ЕВ/АМ = ВК/КМ; в даном случае ВК/КМ = 1, и ЕВ = АМ; то есть эти треугольники равны
Отсюда ЕВ = АС/2; (ВМ - медиана)
Треугольники ЕВР и АСР тоже подобны по тому же признаку, поэтому ВР/СР = ЕВ/АС = 1/2
Итак, СР = ВС*2/3; и, площадь треугольника АСР
Sacp = S*2/3; (S - площадь треугольника АВС).
Поскольку площадь треугольника ВАМ равна половине площади АВС, а площадь АКМ равна половине АВМ, то
Sakm = S/4;
Таким образом, площадь четырехугольника КРСМ равна
Skpcm = Sacp - Sakm = S*(2/3 - 1/4) = S*5/12;
ответ 12/5
Находим отношение ВР/СР;
Через вершину В проводится прямая II АС. АР продолжается за точку Р до пересечения с этой прямой в точке Е.
Итак, ВЕ II AC;
Треугольники ЕВК и АКМ подобны по равенству углов , поэтому ЕВ/АМ = ВК/КМ; в даном случае ВК/КМ = 1, и ЕВ = АМ; то есть эти треугольники равны
Отсюда ЕВ = АС/2; (ВМ - медиана)
Треугольники ЕВР и АСР тоже подобны по тому же признаку, поэтому ВР/СР = ЕВ/АС = 1/2
Итак, СР = ВС*2/3; и, площадь треугольника АСР
Sacp = S*2/3; (S - площадь треугольника АВС).
Поскольку площадь треугольника ВАМ равна половине площади АВС, а площадь АКМ равна половине АВМ, то
Sakm = S/4;
Таким образом, площадь четырехугольника КРСМ равна
Skpcm = Sacp - Sakm = S*(2/3 - 1/4) = S*5/12;
ответ 12/5
если площадь квадрата равна 16, то сторона равна 4, а длины сторон прямоугольника равны соответственно 8 и 4, тогда периметр 2*(8+4)=
24(см)