вам решение: с вас шоколадка ))
а={3; -1; 1} и b={0; 2; 1}, пусть перпендикулярный вектор с={x,y,z}
тогда скалярное произведение ac=0, bc=0, то есть
3x- y+z =0
2y+z =0
x^2+y^2+z^2=1 (так как с - единичный вектор).
решая систему из этих трех уравнений, получим, что
z=-2y (из второго)
x=y (из первого)
подставим все в последнее, получим, что 6у^2=1, то есть у=+-1/(корень из 6),
тогда х=+-1/(корень из 6), z=-+2/(корень из 6).
ответ: (1/(корень из 6),1/(корень из 6 /(корень из 6))
и (-1/(корень из /(корень из 6 ),2/(корень из
б) Чисел, делящихся на 2 (четных), среди первых 99-ти [99 : 2] = 49 .
Среди этих чисел есть 16, которые делятся и на 3.
Поэтому чисел, которые делятся на 2, но не делятся на 3, в рассматриваемом интервале всего 49 - 16 = 33.
в) Чисел, делящихся на 3, в рассматриваемом интервале 99 : 3 = 33.
16 из них делятся также и на 2.
Поэтому, чисел, которые делятся на 3, но не делятся на 2, всего 33 - 16 = 17.
г) Количество чисел, которые делятся и на 2 или на 3, определим, добавив к 49 четным числам 17 чисел, которые делятся на 3, но не делятся на 2 : 49 + 17 = 66.
д) Всего в рассматриваемом интервале 99 чисел, из них 66 делятся либо на 2, либо на 3. Остается 99 - 66 = 33 числа, которые не делятся ни на 2, ни на 3.