Пусть производительность первого рабочего x (1/ч) , второго -- y (1/ч) . Тогда первому рабочему потребуется на выполнение всего задания (1/x) часов, второму -- (1/y) часов. Записываем первое уравнение: (1) 1/y - 1/x = 3. За 4 часа первый рабочий выполнит (4x) задания, второй за 3 часа выполнит (3y) задания. Вместе они выполнят всё задание, т. е. 1. Имеем второе уравнение: (2) 4x + 3y = 1 => y = (1 - 4x)/3 Подставляя в (1), получим 3/(1-4x) - 1/x = 3. Умножаем на x(1-4x): 3x - (1-4x) = 3x(1-4x); 7x -1 = 3x - 12x^2; 12x^2 + 4x - 1 = 0. Нас интересует только положительное значение x, поэтому x = (-2 + sqrt(2^2+12))/12 = (-2+4)/12 = 1/6. Значит, первому рабочему на выполнение всего задания потребуется 1/x = 6 часов.
1. Налить пятилитровый сосуд водой и перелить его в восьмилитровый сосуд (в восьмилитровом сосуде станет 5л воды, 3 л-свободны). 2. Налить пятилитровый сосуд водой и перелить в восьмилитровый сосуд (влезет только 3л, т.к. в нем уже есть 5л воды).После того как из пятилитрового сосуда выльете 3 л в нем останется 2л воды. 3. Вылить всю воду из восьмилитрового сосудаи перелить туда все что осталось в пятилитровом сосуде, т.е 2 л. 4. Налить полный пятилитровый сосуд и вылить его в восьмилитровый сосуд, в котором уже налито 2 л. Таким образом, в восмилитровом сосуде окажется 7 л воды (2+5=7)
Пошаговое объяснение:
(7+2)+(3+8)=(7+3)+(2+8)=10+10=20
5+(4+6)=5+10=15