М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ffffffd639473
ffffffd639473
16.10.2022 03:04 •  Математика

Саша и петя одновременно поплыли навстречу друг другу от двух берегов пруда и через несколько минут встретились. какре расстояние проплыл до встречи каждый из них, если ширина пруда равна 300м и один из плавцов
проплыл на 120 м меньше другого?

👇
Ответ:
Nasvay228
Nasvay228
16.10.2022

300-120=180 м

180:2=90 м -один пловец

90+120=210 м -второй пловец

4,6(43 оценок)
Открыть все ответы
Ответ:
влада12342
влада12342
16.10.2022

a\in(-\infty, a_0)\cup(a_0,0)\cup(0,1/4), где a_0\approx-0.16

Пошаговое объяснение:

В числителе стоит квадратный трёхчлен, у него может быть не более 2 корней. Значит, чтобы у уравнения было ровно 2 различных корня, числитель должен иметь 2 корня, и ни один из корней числителя не должен быть корнем знаменателя.

У числителя два неравных корня, если дискриминант больше нуля:

D=1-4a0

Найдём, при каких a хотя бы какой-то корень числителя является корнем знаменателя:

x^2-x+a=x^2-2x+a^2-6a=0\\\begin{cases}x=a^2-7a\\x^2-x+a=0\end{cases}

Подставляем найденный x в уравнение:

a^2(a-7)^2-a(a-7)+a=0\\a(a^3-14a^2+49a-a+7+1)=0\\a(a^3-14a^2+48a+8)=0

Один корень (a = 0) находится легко, еще один корень можно выписать по формулам для кубических уравнений или найти графически. Можно показать, что что этот корень a_0 единственный и удовлетворяет неравенству 1 - 4a > 0: производная функции f(a)=a^3-14a^2+48a+8 равна f'(a)=3a^2-28a+48. При a < 1/4 производная положительна, кроме того, f(0)0, f(-1)<0, поэтому f(a) имеет корень на отрезке [-1, 0]. Выражение для a_0 довольно-таки громоздкое, по графику a_0\approx-0.16


(x^2-x+a)/(x^2-2x+a^2-6a)=0 при каких значениях а данное уравнение будет иметь 2 различных корня?
4,7(73 оценок)
Ответ:
valeri0910200
valeri0910200
16.10.2022

a\in(-\infty, a_0)\cup(a_0,0)\cup(0,1/4), где a_0\approx-0.16

Пошаговое объяснение:

В числителе стоит квадратный трёхчлен, у него может быть не более 2 корней. Значит, чтобы у уравнения было ровно 2 различных корня, числитель должен иметь 2 корня, и ни один из корней числителя не должен быть корнем знаменателя.

У числителя два неравных корня, если дискриминант больше нуля:

D=1-4a0

Найдём, при каких a хотя бы какой-то корень числителя является корнем знаменателя:

x^2-x+a=x^2-2x+a^2-6a=0\\\begin{cases}x=a^2-7a\\x^2-x+a=0\end{cases}

Подставляем найденный x в уравнение:

a^2(a-7)^2-a(a-7)+a=0\\a(a^3-14a^2+49a-a+7+1)=0\\a(a^3-14a^2+48a+8)=0

Один корень (a = 0) находится легко, еще один корень можно выписать по формулам для кубических уравнений или найти графически. Можно показать, что что этот корень a_0 единственный и удовлетворяет неравенству 1 - 4a > 0: производная функции f(a)=a^3-14a^2+48a+8 равна f'(a)=3a^2-28a+48. При a < 1/4 производная положительна, кроме того, f(0)0, f(-1)<0, поэтому f(a) имеет корень на отрезке [-1, 0]. Выражение для a_0 довольно-таки громоздкое, по графику a_0\approx-0.16


(x^2-x+a)/(x^2-2x+a^2-6a)=0 при каких значениях а данное уравнение будет иметь 2 различных корня?
4,6(9 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ