Можно составить уравнение учтем следующее: х- это куры у- это утки z - это гуси составляем уравнение x+y+z=100 1*x это сумма которую потратим на кур 10*у это сумма потраченная на утку 50*z это сумма потраченная на гуся составляем уравнение 1*х+10*у+50*z=500 получается система уравнений х+у+z=100 1*x+10*y+50*z=500 из первого уравнения выразим х получится х=100-у-z получается такое уравнение, когда подставим второе (100-у-z)+10*e+50*z=500 открываем скобки -у-z+10*у+50*z=500-100 получаем 9*y+49*z=400 y=400-49z/9 y=351/9=39 y=39 уток А поскольку нам нужно купить количество птиц целое число, то чисто логически понимаем, что гуся сможем купить только одного Теперь подставим найденные значения в уравнение х=100-у-z то есть х=100-39-1=60 х=60 кур можно проверить вспомним второе уравнение 1*х+10*у+50*z=500 подставляем найденные значения 1*60+10*39+50*1=500 60+390+50=500 Получается на сумму 500 рублей мы сможем купить 60 кур, 39 уток и 1 гусь ответ: 60 кур, 39 уток и 1 гусь
Вот стандартные формулы, которые найти искомые тригонометрические функции: ctg^2 x + 1 = 1/cos^2 x=> 16/9 + 1 = 1/cos^2 x* tgx * ctg x = 1 => tg x = 1/ctg x = 1/-4/3 = - 3/4 sin^2 x = 1 - cos^2 x => sin^2 x = 1 - 9/25 = 16/25**
*16/9 + 1 = 1/cos^2 x 1/cos^2 x = 25/9 cos^2 x = 9/25 cos x = +- 3/5 (- или + зависит от того, в какой четверти круга располагается x, если в 1 или 4 четверти, то будет плюс, а в 2 или 3 четверти - минус)
**sin^2 x = 16/25 sin x = +-4/5 (- или + зависит от того, в какой четверти круга располагается x, если в 1 или 2 четверти, то будет плюс, а в 3 или 4 четверти - минус)
я так понимаю, это 2 разных примера?
если да, то вот
1) (5m-2n)×(3m+n)
5m+3m+5mn-2n×3m-2n×n
15m²+5mn-6mn-2mn²
=15m²-mn-2n²
2) y²-2xy-5y²=-4y²-2xy