Радиус, проведенный к точке касательной, перпендикулярен касательной. Следовательно он перпендикулярен хорде, поскольку хорда параллельна касательной (по условию). Соединим концы хорды и центр окружности. Получим треугольник АВО. Он равнобедренный и в нем проведена высота ОМ, которая принадлежит радиусу ОК, проведенному к касательной. АМ=МВ, т.к. высота в равнобедренном треугольнике является и медианой.Найдем ОМ. Рассмотрим треугольник АМО. Он прямоугольный. Мы знаем гипотенузу - АО. Это радиус. И знаем АМ. Это половина хорды. Находим второй катет ОМ по теореме Пифагора. ОМ=√(65²-63²)=16. Следовательно МК=65-16=49
k/m > n/d
Пошаговое объяснение:
m < n < k < d
k > m => k/m - неправильная дробь => k/m > 1
n < d => n/d - правильная дробь => n/d < 1
Следовательно, k/m > n/d