Если в условии "Составьте таблицу для целых значений х, расположенных между 1 и 4", то решение следующее:
1. Обратная пропорциональность задаётся формулой вида у = k/х, где к - число, отличное от нуля.
В нашем случае
4 = к/3
к = 4·3 = 12
Получили, что у = 12/х.
2. Между 1 и 4 лежат целые числа: 2 и 3.
Если х = 2, то у = 12/2 = 6;
Если х = 3, то у = 12/3 = 4;
Таблица может выглядеть так:
х 2 3
у 6 4
Если в условии "Составьте таблицу для целых значений х, расположенных от 1 до 4", то в таблице добавятся столбцы
х 1 2 3 4
у 12 6 4 3
2) x1 = 60 (deg) = pi/3 = pi*1/3 (rad)
x2 = 63 (deg) = pi*7/20(rad)
производная от косинуса это минус синус
умножаем значение производной в точке x1 на прирост аргумента то есть x2-x1, и прибавляем полученное значение к значению функции в точке x1.
прирост значения функции
(приблизительно)