М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Sasha0102031
Sasha0102031
30.08.2021 06:03 •  Математика

Проверить, лежат ли прямые
\left \{ {{8x+y-8z=0} \atop {y-4z=4}} \right.
\left \{ {{x=t-11} \atop {y=8t+16}} \right. и z=2t-19
в одной плоскости. если да, то составить уравнение этой плоскости.

👇
Ответ:
spacgumenmari1
spacgumenmari1
30.08.2021
Для начала, нам нужно привести уравнение прямых к параметрическому виду.

Для первой прямой из системы уравнений \left \{ {{8x+y-8z=0} \atop {y-4z=4}} \right., мы можем решить систему уравнений и выразить переменные x, y и z через параметр t:

[текст пошагового решения]

1. Решаем второе уравнение системы и получаем выражение для y через z:
y - 4z = 4 \Rightarrow y = 4z + 4

2. Подставляем это выражение для y в первое уравнение и получаем выражение для x через z:
8x + (4z + 4) - 8z = 0 \Rightarrow 8x - 4z = -4 \Rightarrow 2x - z = -1

3. Так как у нас параметр t уже используется для второй прямой, мы можем переобозначить переменные для первой прямой следующим образом:
x = a, y = b

4. Подставляем a и b вместо x и y в уравнении для первой прямой:
2a - z = -1

Таким образом, параметрическое уравнение для первой прямой \left \{ {{8x+y-8z=0} \atop {y-4z=4}} \right. будет выглядеть следующим образом:
\left \{ {{x=a} \atop {y=b}} \right. и z=2a-1

Теперь перейдем ко второй прямой:

Для второй прямой, у нас уже есть параметрическое уравнение:
\left \{ {{x=t-11} \atop {y=8t+16}} \right. и z=2t-19

Теперь нужно проверить, лежат ли обе прямые в одной плоскости. Для этого мы должны проверить, существуют ли такие значения параметра t и a, при которых два параметрических уравнения будут приводить к одинаковым значениям x, y и z.

a = t - 11 - параметрическое уравнение второй прямой.

Также мы знаем, что z = 2t - 19 для второй прямой.

Подставляя значения a и z из параметрического уравнения второй прямой в параметрическое уравнение первой прямой, получаем следующее:

2(t-11) - (2t-19) = -1

2t-22-2t+19=-1

-3= -1

Это уравнение противоречит себе. Коэффициенты перед переменными t и a не равны друг другу, значит, прямые не лежат в одной плоскости.

Ответ: прямые не лежат в одной плоскости.
4,6(64 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ