Пошаговое объяснение:
1)
3x+2=8
3x = 8 - 2
3x = 6
x = 6 : 3
x = 2
2)
3-5x= -22
5x = 3 + 22
5x = 25
x = 25 : 5
x = 5
3)
8x-5=x-40
8x - x = -40 + 5
7x = -35
x = -35 : 7
x = -5
ответ:ответ: первые три члена данной прогрессии равны соответственно 25, 50 и 100
Пошаговое объяснение:
Используя формулу n-го члена геометрической прогрессии bn = b1 * qn - 1, где b1 — первый член геометрической прогрессии, q — знаменатель геометрической прогрессии, получаем следующие соотношения:
b1 + b1 * q = 75;
b1 * q + b1 * q² = 150.
Решаем полученную систему уравнений.
Разделив второе уравнение на первое, получаем:
(b1 * q + b1 * q²) / (b1 + b1 * q ) = 150 / 75;
(q + q²) / (1 + q ) = 2;
q * (1 + q) / (1 + q ) = 2;
q = 2.
Подставляя найденное значение q = 2 в уравнение b1 + b1 * q = 75 , получаем:
b1 + b1 * 2 = 75;
3 * b1 = 75;
b1 = 75 / 3;
b1 = 25.
Находим второй и третий члены прогрессии:
b2 = b1 * q = 25 * 2 = 50;
b3 = b2 * q = 50 * 2 = 100.
ответ: первые три члена данной прогрессии равны соответственно 25, 50 и 100
ответ:ответ: первые три члена данной прогрессии равны соответственно 25, 50 и 100
Пошаговое объяснение:
Используя формулу n-го члена геометрической прогрессии bn = b1 * qn - 1, где b1 — первый член геометрической прогрессии, q — знаменатель геометрической прогрессии, получаем следующие соотношения:
b1 + b1 * q = 75;
b1 * q + b1 * q² = 150.
Решаем полученную систему уравнений.
Разделив второе уравнение на первое, получаем:
(b1 * q + b1 * q²) / (b1 + b1 * q ) = 150 / 75;
(q + q²) / (1 + q ) = 2;
q * (1 + q) / (1 + q ) = 2;
q = 2.
Подставляя найденное значение q = 2 в уравнение b1 + b1 * q = 75 , получаем:
b1 + b1 * 2 = 75;
3 * b1 = 75;
b1 = 75 / 3;
b1 = 25.
Находим второй и третий члены прогрессии:
b2 = b1 * q = 25 * 2 = 50;
b3 = b2 * q = 50 * 2 = 100.
ответ: первые три члена данной прогрессии равны соответственно 25, 50 и 100
Пошаговое объяснение:
3x+2=8
3x = 8-2
3x = 6
x=6:2
x=3
3-5x=-22
-5x=-22-3
-5x=-25
5x=25
x=5
8x-5=x-40
8x-x=-40+5
7x=-35
x=-5