На (1;2) f(x)=2 на (2;3) f(x)=4 на (3;4) f(x)=6 на (4;5) f(x)=8 на (5;6) f(x)=10 и т. д. график см. рисунок в приложении. Обратите внимание, ни крайне левой точки, ни крайне правой точки на ступеньках нет Если соединить начало координат и левые края ступенек в верхней полуплоскости, получим прямую у=2х. Но k=2 не является ответом, так как левые края ступенек не являются точками графика, как и правые. у=2х и у=0,75 х не удовлетворяют условию. См. рисунок 2. Сужаем угол.
Рассмотрим прямую, проходящую через точку (0;0) и точку (11; 20) Эта прямая будет пересекать график в 9 точках на отрезке, где f(x)=2 f(x)=4 f(x)=6 f(x)=8 f(x)=10 f(x)=12 f(x)=14 f(x)=16 f(x)=18
В условии был интервал (m;m+1). Потом стал [m;m+1). Значит к=2 входит в ответ. Прямая у=0,75х (проходит через (0;0) и (3;4) будет иметь одну точку пересечения. Прямая у=1,8х (проходящая через точки (0:0)и (9;18) девять. При 1,8<k<=2 ,будет более девяти. Это в верхней полуплоскости. В нижней 2<=k<18/8=2,25. Прямая, проходящая через правый край ступеньки f(x)=-18, т.е точку (-8;-18) ответ (1,8;2,25)
Периметр - сумма длин всех сторон. У равнобедренного треугольника: две равные стороны и основание. Пусть а - сторона треугольника , b - основание. Р= a+a+b =30 см Следовательно может быть : 1) Основание больше на 3 см, чем сторона. Р= a+a+(a+3)= 30 см 3а+3=30 3а=30-3 3а=27 а=9 см - сторона треугольника 9+3=12 см - основание треугольника Р= 9+9+12 =30 см 2) Сторона больше на 3 см, чем основание. Р= (b+3)+(b+3) +b =30 3b+6= 30 3b=30-6 3b=24 b=8 см - основание 8+3= 11 см - сторона Р= 11+11+8=30 см. ответ: стороны равнобедренного треугольника могут быть: 1) 9 см, 9 см, 12 см 2) 11 см , 11 см, 8 см
сфоткай схему а то не понятно