1. Метод исключения неизвестных.

Продифференцируем первое уравнение:

Подставим выражение для y':


Из получившегося уравнения отнимем первое уравнение системы:


Составим характеристическое уравнение:



Найдем производную:

Выразим из первого уравнение системы у:





Общее решение:

Находим решение задачи Коши:


Первое уравнение домножим на 2:

Сложим уравнения:


Выразим
:

Частное решение:


2. Метод характеристических уравнений (метод Эйлера).

Матрица из коэффициентов при неизвестных:

Характеристическая матрица:

Характеристическое уравнение:





Общее решение:

Ищем фундаментальную систему решений:




Для нахождения чисел
составим систему:

Для
:

Оба уравнения дают:


Найдем ненулевое решение. Пусть
. Тогда
.
Для
:

Оба уравнения дают:


Найдем ненулевое решение. Пусть
. Тогда
.
Фундаментальная система решений найдена:




Общее решение:

Находим частное решение:


Первое уравнение домножим на 2:

Сложим уравнения:


Выразим
:

Частное решение:


33 км
Пошаговое объяснение:
1) 18 : (6/5) = 18 · 5/6 = 15 (км) - во второй день
2) 18 + 15 = 33 (км) - за два дня