Решение: Обозначим объём резервуара за 1(единицу), а время наполнение резервуара первой трубой за (х) мин, тогда согласно условия задачи, время наполнение резервуара второй трубой равно (х-4)мин Производительность наполнения водой резервуара первой трубой равна: 1/х Производительность наполнения водой резервуара второй трубой равна: 1/(х-4) А так как обе трубы наполняя резервуар за 4,8 минуты, составим уравнение: 1 : [1/x+1/(x-4)]=4,8 Упростим делитель: 1/х+1/(х-4) -приведём к общему знаменателю х*(х-4) [(х-4)*1+х*1] / х*(х-4)=(х-4+х)/(x^2-4x)=(2x-4)/(x^2-4x) Разделим 1 на получившееся выражение: 1 : (2х-4)/(x^2-4x)=1*(x^2-4x)/(2x-4)=(x^2-4x)/(2x-4) Приравняем получившееся выражение к 4,8 (x^2-4x)/(2x-4)=4,8 приведём уравнение к общему знаменателю (2х-4) x^2-4x=(2x-4)*4,8 x^2-4x=9,6x-19,2 x^2-4x-9,6x+19,2=0 x^2-13,6x+19,2=0 x1,2=(13,6+-D)/2*1 D=√[(13,6)²-4*1*19,2]=√(184,96-76,8)=√108,16=10,4 x1=(13,6+-10,4)/2 х1=(13,6+10,4)/2 х1=24/2 х1=12 х2=(13,6-10,4)/2 х2=3,2/2 х2=1,6 - не соответствует условию задачи, т.к. мы обозначили время наполнения второй трубой резервуара (х-4), а это было бы: (1,6-4)=-2,4(мин) -время не может быть отрицательным числом. Отсюда следует: время наполнения резервуара второй трубой равно: 12-4=8 (мин)
ответ: Резервуар наполнится второй трубой за 8 минут
Самое главное, что привлекало греческих колонистов к Северному Причерноморью,— это хлеб, скот и, наконец, рабы. Греческий историк II в. до н. э. Полибий рассказывает, что в Понте, т. е. на Черном море, есть много полезного для жизни других народов. Окружающие Понт страны доставляли грекам скот и огромное количество «бесспорно отличнейших рабов», а также вывозили в изобилии мед, воск и рыбу, строевой лес, меха, шкуры и шерсть, но основным предметом вывоза служил зерновой хлеб, в котором так нуждалась значительная часть материковой, островной и малоазийской Греции.