Пошаговое объяснение:1) Область определения функции. Точки разрыва функции.
2) Четность или нечетность функции.
y(-x)=
Функция общего вида
3) Периодичность функции.
4) Точки пересечения кривой с осями координат.
Пересечение с осью 0Y
x=0, y=
Пересечение с осью 0X
y=0
4-2·x-7·x2=0
Нет пересечений.
5) Исследование на экстремум.
y = 4-2*x-7*x^2
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = -14·x-2
Находим нули функции. Для этого приравниваем производную к нулю
-14·x-2 = 0
Откуда:
x1 = -1/7
В окрестности точки x = -1/7 производная функции меняет знак с (+) на (-). Следовательно, точка x = -1/7 - точка максимума.
2. Найдем интервалы выпуклости и вогнутости функции. Вторая производная.
f''(x) = -14
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
-14 = 0
Для данного уравнения корней нет.
6) Асимптоты кривой.
y = 4-2·x-7·x2
Уравнения наклонных асимптот обычно ищут в виде y = kx + b. По определению асимптоты:
Решаем по действиям: 1) 2+1=3
2) 3/2=1,5
3) 15/9=5/3
4)5/3-1/6=1,5
5)1,5/1,5 =1
6) 1-3,3= -2,3
ответ на ваше первое уравнение -2,3
Решаем по действиям: 1) 12-7,4=4,6
2) 5,6-4,6=1
3) 1-5,6 =-4,6
4) -4,6+1,2= -3,4
5) -3,4-(-3,4)
6)-3,4+3,4=0
ответ на ваше второе выражение нуль
Пошаговое объяснение:
|х|+5|х|-4|х|=40
6|х|=40
|х|=40/6
|х|=6целых4/6
х1=6 целых 4/6
х2= -6целых4/6