Пошаговое объяснение:
Проведем ОК⊥МВ. Тогда ОК - расстояние от точки О до прямой МК и ОК = а.
ΔАВС равнобедренный, значит медиана ВО (ОА = ОС по условию) является и высотой,
ВО⊥АС,
МО⊥АС по условию, значит
АС⊥(МОВ).
МВ лежит в плоскости (МОВ), значит МВ⊥АС и ОК⊥МВ по построению, тогда МВ⊥(АКС) и значит ∠АКС - линейный угол двугранного угла между плоскостями (АМВ) и (СМВ).
АО = ОС = АС/2 = а√3, МО - медиана и высота в треугольнике МАС, значит он равнобедренный,
МА = МС.
ΔМАК = ΔМСК по гипотенузе и катету (∠АКМ = ∠СКМ = 90°, МА = МС и МК - общий катет), тогда
АК = КС, значит медиана ОК в равнобедренном треугольнике АКС является и высотой и биссектрисой, т.е. ОК⊥АС и ∠АКС = 2∠ОКС.
ΔОКС: ∠КОС = 90°,
tg∠OKC = OC / OK = a√3 / a = √3
Тогда ∠ОКС = 60°.
∠АКС = 2∠ОКС = 120°
У прямоугольника 2 пары равных сторон - длина и ширина.
Периметр прямоугольника равен: 2 · (длина + ширина) или P = 2(a+b).
Площадь прямоугольника: длина · ширина или S = a · b.
Квадрат - это прямоугольник, у которого все стороны равны, поэтому его периметр находят так: 4 · сторона или Р = 4 · а, а площадь так: сторона · сторона или S = a · a.
1) 7 + 4 = 11 (см) - длина прямоугольника
2) 2 · (7 + 11) = 36 (см) - периметр прямоугольника
3) 7 · 11 = 77 (см²) - площадь прямоугольника
4) 36 : 4 = 9 (см) - сторона квадрата
6) 9 · 9 = 81 (см²) - площадь квадрата