Содержание: Действие сложения рациональных чисел Сложение нуля с отличным от него рациональным числом Сложение противоположных рациональных чисел Сложение положительных рациональных чисел Сложение рациональных чисел с разными знаками Сложение отрицательных рациональных чисел Действие вычитания рациональных чисел Действие умножения рациональных чисел Умножение на нуль Умножение на единицу Умножение взаимообратных чисел Умножение положительных рациональных чисел Умножение рациональных чисел с разными знаками Умножение отрицательных рациональных чисел Деление рациональных чисел
Пошаговое объяснение:
рада ❤️
6) приравниваем выражение под модулем к нулю. x=3/4
Нарисуем интервал и разобьём его на 2 отрезка: (-беск. до 3/4] и (3/4 до +беск.)
Берём из первого интервала любое число, например -100. Подставляем в выражение 4x-3. Получается отрицательное число, значит знак на интервале (-беск. до 3/4] "-".
Аналогично, для второго интервала, берём число 100, подставляем. Знак интервала (3/4 до +беск.) "+".
Раскрываем модуль на 1-ом интервале:
-7/3(4x-3)+7,2=9
x= 39/70
Проверяем на интервале (-беск. до 3/4]
Данное число входит в этот интервал, значит является корнем.
Также на 2-ом, со знаком "+".
7/3(4x-3)+7,2=9
x=33/35
Проверяем на интервале (3/4 до +беск.). Данный корень является решением
ответ: x=39/70, x2=33/35
(-1;2)
Пошаговое объяснение:
3x+1>2
3x>1
x> 1/3
3x+1<7
3x<6
x<2
(-1;2)