Главный тезис Л.Н. Толстого, что человек – это дробь: Ч/З, где числитель Ч – это его человеческая сущность, а знаменатель З – то, что он о себе думает. Лев Николаевич акцентирует внимание на том, что, чем больше З, тем меньше дробь. Да, действительно. Из двух дробей с одинаковыми Ч меньше та, у которой З больше. Так, 7/8 > 7/9 >> 7/ 900 . Мы знаем, что при З → ∞ дробь (Ч/З) → 0. Т.е. излишнее, а тем более, маниакальное, самомнение превращает в ничто человеческую личность. И даже большой Ч уже не может ситуацию. Дробь-то ничтожно мала! Но это утверждение великого писателя не так однозначно. Оно дает богатый материал для рассуждений. А жизненные наблюдения подкреплены математикой! Если Ч>З, т.е. человек недооценивает себя, то это неправильно. Неправильная дробь, так говорит нам математика. Робость сделать что-то не то, ощущение, что другие лучше него, мешает человеку и вредят обществу в целом. Ведь человек не может раскрыть свой потенциал и принести человечеству то, что мог бы, если бы верил в себя. Такого человека надо поддержать, повысить его самооценку, чтобы дробь стала приближенной к единице. Правда, при Ч=З дробь тоже неправильная, но зато это адекватная человеческая единица. А что будет, если у человека З = 0? Таких людей не существует. В этом едины и жизнь, и математика. Если человек не думает о себе, значит, он просто не может думать. В психологии есть тесты, где мнение человека о себе и своих сравнивается с мнением окружающих на этот счет. Полученный коэффициент называется уровнем притязаний. Он обратен предложенной Л.Н.Толстым дроби, но его широкое использование еще раз говорит о гениальности писателя, угадавшего методику оценки личности. Да и каждый человек, прочитавший высказывание, хочет, думаю, знать, а какой же дробью он является?
Влевой части стоит сумма модулей - сумма неотрицательных величин. нетрудно понять, что эта сумма будет равна 0 только тогда, когда все слагаемые равны 0. при этом из равенства нулю модуля следует равенство нулю внутримодульного выражения. то есть, имеем систему:теперь решаем систему. решить систему уравнений, значит, найти решения, удовлетворяющие одновременно всем уравнениям системы. первое уравнение - квадратное. с теоремы виета находим корни.во втором уравнении - произведение, равное 0. тут работает простое правило: произведение равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0, а остальные при этом имеют смысл. смысл тут имеют все слагаемые всегда, поэтому приравниваем к 0 каждое слагаемое: или сразу замечаем, что корни -6 и 1 удовлетворяют обоим уравнениям, а вот 6 - не у дел, поэтому отбрасываем его. третье уравнение - аналогично, произведение, равное 0. применяем правило, но теперь здесь уже есть квадратный корень, который имеет смысл, если его подкоренное выражение неотрицательно. то есть, имеем или решаем первое уравнение:корень -1 нам не подходит(не удовлетворяет двум предыдущим уравнениям). то есть, здесь остаётся только корень 1. решаем вторую систему:делаем проверку по второму условию:то есть, этот корень проходит проверку по системе. кроме того, он удовлетворяет остальным уравнениям основной системы, поэтому тоже входит в ответ. собираем теперь то, что у нас есть и записываем ответ: -6, 1
1)3%,7%
Пошаговое объяснение:
3/4=3%,7/8=7%