Вот как-то так.
Пошаговое объяснение:
При делении десятичных дробей делитель и делимое домножаются на 10(100,1000 и т.д.) так, что бы делитель стал целым числом, а затем выполняют деление и в частном оказывается такое кол-во чисел после запятой, которое было в делимом.
0,2:0,2=2:2=1
4,5:0,9=45:9=5
3:0,1=30:1=30
0,32:0,4=3,2:4=0,8
7,5:0,25=750:25=30
0,49:0,7=4,9:7=0,7
0,016:0,8=0,16:8=0,02
1:0,5=10:5=2
1,6:0,4=16:4=4
100:125=100,0:125=0,8
5:0,2=50:2=25
1:0,125=1000:125=8
0,6:0,1=6:1=6
4,8:0,8=48:8=6
6,4:0,8=64:8=8
0,2:0,4=2:4=2,0:4=0,5
0,6:0,5=6:5=6,0:5=1,2
0,7:0,01=70:1=70
2:0,5=20:5=4
частная производная по х при фиксированном у равна
[1/√(1-(х/х+у)^2]*2[x/(x+y)]*[1/(x+y)^2][1*(x+y)-x*1] и равна при х=5 у=5
1/√1/2^2*2*1/2*1/100*[5] = 2*1*1/100*5 =10/100=0.1
частная производная по у такая же, кроме последней скобки, которая равна
[0*(x+y)-x*1]=-5 и вся частная производная -0,1
grad y в точке А равен 0.1 i -0.1j, где i,j единичные вектора про осям Х и У.
производная по направлению вектора a=-12i+5j ищут как сумму произведений частных производных в точке на направляющие косинусы. Вектор а имеет координаты (-12, +5) и мы можем посчитать длину (модуль) вектора а : модуль а=√(12^2+5^2) = √144+25 =√169 = 13
cosα=-12/13, cosβ=5/13 частные производные в точке А мы посчитали выше, это 0,1 и -0,1
Производная по направлению вектора а равна
0,1*(-12/13)-0,1*5/13 = -0,1 *(12/13+5/13) = -1/10*17/13=-17/130