![\dfrac{2x}{x-d}=\dfrac{x-d}{d}=d\neq 0, x\neq d\\ 2xd=(x-d)^2\\ 2xd=x^2-2xd+d^2\\ x^2-4xd+4d^2-3d^2=0\\ (x-2d)^2-(d\sqrt 3)^2=0\\ x-2d=d\sqrt 3\;\;\;\;\;\;\;x-2d=-d\sqrt 3\\ x=d(2+\sqrt 3)\;\;\;\;\;\;x=d(2-\sqrt 3)\\\left[x\neq d=d(2\pm\sqrt 3)\neq d=d\neq 0\right]\\ OTBET: (d,d(2\pm\sqrt 3)), d\neq 0](/tpl/images/1069/5212/a6601.png)
z = (x-2)^2+2*y^2-10
1. Найдем частные производные.
На фото
2. Решим систему уравнений.
2*x-4 = 0
4*y = 0
Получим:
а) Из первого уравнения выражаем x и подставляем во второе уравнение:
x = 2
4*y = 0
Откуда y = 0
Данные значения y подставляем в выражение для x. Получаем: x = 2
Количество критических точек равно 1.
M1(2;0)
3. Найдем частные производные второго порядка.
На фото
4. Вычислим значение этих частных производных второго порядка в критических точках M(x0;y0).
Вычисляем значения для точки M1(2;0)
На фото
AC - B2 = 8 > 0 и A > 0 , то в точке M1(2;0) имеется минимум z(2;0) = -10
Вывод: В точке M1(2;0) имеется минимум z(2;0) = -10;
z = (x-2)^2+2*y^2-10
1. Найдем частные производные.
На фото
2. Решим систему уравнений.
2*x-4 = 0
4*y = 0
Получим:
а) Из первого уравнения выражаем x и подставляем во второе уравнение:
x = 2
4*y = 0
Откуда y = 0
Данные значения y подставляем в выражение для x. Получаем: x = 2
Количество критических точек равно 1.
M1(2;0)
3. Найдем частные производные второго порядка.
На фото
4. Вычислим значение этих частных производных второго порядка в критических точках M(x0;y0).
Вычисляем значения для точки M1(2;0)
На фото
AC - B2 = 8 > 0 и A > 0 , то в точке M1(2;0) имеется минимум z(2;0) = -10
Вывод: В точке M1(2;0) имеется минимум z(2;0) = -10;